Abstract The unique chemical and physical properties of graphene and its derivatives (graphene oxide, heteroatom‐doped graphene, and functionalized graphene) have stimulated tremendous efforts and made significant progress in fuel cell applications. This review focuses on the latest advances in the use of graphene‐based materials in electrodes, electrolytes, and bipolar plates for fuel cells. The understanding of structure‐activity relationships of metal‐free heteroatom‐doped graphene and graphene‐supported catalysts was highlighted. The performances and advantages of graphene‐based materials in membranes and bipolar plates were summarized. We also outlined the challenges and perspectives in using graphene‐based materials for fuel cell applications.
more »
« less
Atomic-scale identification of nitrogen dopants in graphene on Ir(111) and Ru(0001)
Abstract Nitrogen (N) doped graphene materials have been synthesized using the sole precursor adenine on the Ir(111) and Ru(0001) surfaces. X-ray photoelectron spectroscopy and scanning tunneling microscopy (STM) have been used to characterize the obtained N-doped graphene materials. Several graphitic and pyridinic N dopants have been identified on the atomic scale by combining STM measurements and STM simulations based on density functional theory calculations.
more »
« less
- Award ID(s):
- 1809805
- PAR ID:
- 10430079
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 35
- Issue:
- 40
- ISSN:
- 0953-8984
- Page Range / eLocation ID:
- 405003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite the various strategies for achieving metal–nitrogen–carbon (M–N–C) single-atom catalysts (SACs) with different microenvironments for electrochemical carbon dioxide reduction reaction (CO 2 RR), the synthesis–structure–performance correlation remains elusive due to the lack of well-controlled synthetic approaches. Here, we employed Ni nanoparticles as starting materials for the direct synthesis of nickel (Ni) SACs in one spot through harvesting the interaction between metallic Ni and N atoms in the precursor during the chemical vapor deposition growth of hierarchical N-doped graphene fibers. By combining with first-principle calculations, we found that the Ni-N configuration is closely correlated to the N contents in the precursor, in which the acetonitrile with a high N/C ratio favors the formation of Ni-N 3 , while the pyridine with a low N/C ratio is more likely to promote the evolution of Ni-N 2 . Moreover, we revealed that the presence of N favors the formation of H-terminated edge of sp 2 carbon and consequently leads to the formation of graphene fibers consisting of vertically stacked graphene flakes, instead of the traditional growth of carbon nanotubes on Ni nanoparticles. With a high capability in balancing the *COOH formation and *CO desorption, the as-prepared hierarchical N-doped graphene nanofibers with Ni-N 3 sites exhibit a superior CO 2 RR performance compared to that with Ni-N 2 and Ni-N 4 ones.more » « less
-
Abstract Lateral p–n junctions take the unique advantages of 2D materials, such as graphene, to enable single‐atomic layer microelectronics. A major challenge in fabrication of the lateral p–n junctions is in the control of electronic properties on a 2D atomic sheet with nanometer precision. Herein, a facile approach that employs decoration of molecular anions of bis‐(trifluoromethylsulfonyl)‐imide (TFSI) to generate p‐doping on the otherwise n‐doped graphene by positively polarized surface electric dipoles (pointing toward the surface) formed on the surface oxygen‐deficient layer “intrinsic” to an oxide ferroelectric back gate is reported. The characteristic double conductance minimaVDirac−andVDirac+illustrated in the obtained lateral graphene p–n junctions can be tuned in the range of −1 to 0 V and 0 to +1 V, respectively, by controlling the TFSI anions and surface dipoles quantitatively. The unique advantage of this approach is in adoption of polarity‐controlled molecular ion attachment on graphene, which could be further developed for various lateral electronics on 2D materials.more » « less
-
While nitrogen doping greatly broadens graphene applications, relatively little is known about the influence of this heteroatom on the biological activity of graphene. A set of systematically modified nitrogen-doped graphene (NG) materials was synthesized using the hydrothermal method in which the degree of N-doping and N-bonding type is manipulated using two nitrogen precursors (urea and uric acid) and different thermal annealing temperatures. The bioactivity of the NG samples was evaluated using the oxidation of the intracellular antioxidant glutathione (GSH) and bacterial viability (of Escherichia coli K12), and oxidative stress was identified as the predominant antibacterial mechanism. Two key energy-relevant electrochemical reactions, oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), were used to characterize the influence of different N-types on the electronic properties of the NG materials. Electron-donating graphitic-N and electron-withdrawing pyridinic-N were identified as effective promoters for ORR and OER, respectively. The similar mechanisms between the GSH oxidation (indicative of oxidative stress) and ORR mechanisms reveal the role of graphitic-N as the active site in oxidative stress related bioactivity, independent of other consequential properties ( e.g. , defect density, surface area). This work advances a growing rational design paradigm for graphene family materials using chemical composition and further provides valuable insight into the performance-hazard tradeoffs of NG applications in related fields.more » « less
-
Sodium- and potassium-ion batteries are one of the most promising electrical energy storage devices at low cost, but their inferior rate and capacity have hampered broader applications such as electric vehicles and grids. Carbon nanomaterials have been demonstrated to have ultrafast surface-dominated ion uptake to drastically increase the rate and capacity, but trial-and-error approaches are usually used to find desired anode materials from numerous candidates. Here, we developed guiding principles to rationally screen pseudocapacitive anodes from numerous candidate carbon materials to create ultrafast Na- and K-ion batteries. The transition from pseudocapacitive to metal-battery mechanisms on heteroatom-doped graphene in charging process was revealed by the density functional theory methods. The results show that the graphene substrate can guide the preferential growth of K and Na along graphene plane, which inhibits dendrite development effectively in the batteries. An intrinsic descriptor is discovered to establish a volcano-shaped relationship that correlates the capacity with the intrinsic physical qualities of the doping structures, from which the best anode materials could be predicted. The predictions are in good agreement with the experimental results. The strategies for enhancing both the power and energy densities are proposed based on the predictions and experiments for the batteries.more » « less
An official website of the United States government

