skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trap and Replace: Defending Backdoor Attacks by Trapping Them into an Easy-to-Replace Subnetwork
Award ID(s):
1749940 2212174
PAR ID:
10430109
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 35 (NeurIPS 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks (DNNs) are vulnerable to backdoor attacks. Previous works have shown it extremely challenging to unlearn the undesired backdoor behavior from the network, since the entire network can be affected by the backdoor samples. In this paper, we propose a brand-new backdoor defense strategy, which makes it much easier to remove the harmful influence of backdoor samples from the model. Our defense strategy, Trap and Replace, consists of two stages. In the first stage, we bait and trap the backdoors in a small and easy-to-replace subnetwork. Specifically, we add an auxiliary image reconstruction head on top of the stem network shared with a light-weighted classification head. The intuition is that the auxiliary image reconstruction task encourages the stem network to keep sufficient low-level visual features that are hard to learn but semantically correct, instead of overfitting to the easy-to-learn but semantically incorrect backdoor correlations. As a result, when trained on backdoored datasets, the backdoors are easily baited towards the unprotected classification head, since it is much more vulnerable than the shared stem, leaving the stem network hardly poisoned. In the second stage, we replace the poisoned light-weighted classification head with an untainted one, by re-training it from scratch only on a small holdout dataset with clean samples, while fixing the stem network. As a result, both the stem and the classification head in the final network are hardly affected by backdoor training samples. We evaluate our method against ten different backdoor attacks. Our method outperforms previous state-of-the-art methods by up to 20.57%, 9.80%, and 13.72% attack success rate and on-average 3.14%, 1.80%, and 1.21% clean classification accuracy on CIFAR10, GTSRB, and ImageNet-12, respectively. Code is available at https://github.com/VITA-Group/Trap-and-Replace-Backdoor-Defense. 
    more » « less
  2. Hashing is a fundamental operation in database management, playing a key role in the implementation of numerous core database data structures and algorithms. Traditional hash functions aim to mimic a function that maps a key to a random value, which can result in collisions, where multiple keys are mapped to the same value. There are many well-known schemes like chaining, probing, and cuckoo hashing to handle collisions. In this work, we aim to study if using learned models instead of traditional hash functions can reduce collisions and whether such a reduction translates to improved performance, particularly for indexing and joins. We show that learned models reduce collisions in some cases, which depend on how the data is distributed. To evaluate the effectiveness of learned models as hash function, we test them with bucket chaining, linear probing, and cuckoo hash tables. We find that learned models can (1) yield a 1.4x lower probe latency, and (2) reduce the non-partitioned hash join runtime with 28% over the next best baseline for certain datasets. On the other hand, if the data distribution is not suitable, we either do not see gains or see worse performance. In summary, we find that learned models can indeed outperform hash functions, but only for certain data distributions. 
    more » « less
  3. Notebook and spreadsheet systems are currently the de-facto standard for data collection, preparation, and analysis. However, these systems have been criticized for their lack of reproducibility, versioning, and support for sharing. These shortcomings are particularly detrimental for data curation where data scientists iteratively build workflows to clean up and integrate data as a prerequisite for analysis. We present Vizier, an open-source tool that helps analysts to build and refine data pipelines. Vizier combines the flexibility of notebooks with the easy-to-use data manipulation interface of spreadsheets. Combined with advanced provenance tracking for both data and computational steps this enables reproducibility, versioning, and streamlined data exploration. Unique to Vizier is that it exposes potential issues with data, no matter whether they already exist in the input or are introduced by the operations of a notebook. We refer to such potential errors as data caveats. Caveats are propagated alongside data using principled techniques from uncertain data management. Vizier provides extensive user interface support for caveats, e.g., exposing them as summaries in a dedicated error view and highlighting cells with caveats in spreadsheets. 
    more » « less
  4. Bhalachandra, S. (Ed.)