skip to main content


Search for: All records

Award ID contains: 1749940

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data-free knowledge distillation (KD) helps transfer knowledge from a pre-trained model (known as the teacher model) to a smaller model (known as the student model) without access to the original training data used for training the teacher model. However, the security of the synthetic or out-of-distribution (OOD) data required in data-free KD is largely unknown and under-explored. In this work, we make the first effort to uncover the security risk of data-free KD w.r.t. untrusted pre-trained models. We then propose Anti-Backdoor Data-Free KD (ABD), the first plug-in defensive method for data-free KD methods to mitigate the chance of potential backdoors being transferred. We empirically evaluate the effectiveness of our proposed ABD in diminishing transferred backdoor knowledge while maintaining compatible downstream performances as the vanilla KD. We envision this work as a milestone for alarming and mitigating the potential backdoors in data-free KD. Codes are released at https://github.com/illidanlab/ABD . 
    more » « less
    Free, publicly-accessible full text available July 27, 2024
  2. Federated learning (FL) emerges as a popular distributed learning schema that learns a model from a set of participating users without sharing raw data. One major challenge of FL comes with heterogeneous users, who may have distributionally different (or non-iid) data and varying computation resources. As federated users would use the model for prediction, they often demand the trained model to be robust against malicious attackers at test time. Whereas adversarial training (AT) provides a sound solution for centralized learning, extending its usage for federated users has imposed significant challenges, as many users may have very limited training data and tight computational budgets, to afford the data-hungry and costly AT. In this paper, we study a novel FL strategy: propagating adversarial robustness from rich-resource users that can afford AT, to those with poor resources that cannot afford it, during federated learning. We show that existing FL techniques cannot be effectively integrated with the strategy to propagate robustness among non-iid users and propose an efficient propagation approach by the proper use of batch-normalization. We demonstrate the rationality and effectiveness of our method through extensive experiments. Especially, the proposed method is shown to grant federated models remarkable robustness even when only a small portion of users afford AT during learning. Source code can be accessed at https://github.com/illidanlab/FedRBN. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  3. Niu, Gang (Ed.)
    Increasing concerns have been raised on deep learning fairness in recent years. Existing fairness-aware machine learning methods mainly focus on the fairness of in-distribution data. However, in real-world applications, it is common to have distribution shift between the training and test data. In this paper, we first show that the fairness achieved by existing methods can be easily broken by slight distribution shifts. To solve this problem, we propose a novel fairness learning method termed CUrvature MAtching (CUMA), which can achieve robust fairness generalizable to unseen domains with unknown distributional shifts. Specifically, CUMA enforces the model to have similar generalization ability on the majority and minority groups, by matching the loss curvature distributions of the two groups. We evaluate our method on three popular fairness datasets. Compared with existing methods, CUMA achieves superior fairness under unseen distribution shifts, without sacrificing either the overall accuracy or the in-distribution fairness. 
    more » « less
  4. Deep neural networks have witnessed huge successes in many challenging prediction tasks and yet they often suffer from out-of-distribution (OoD) samples, misclassifying them with high confidence. Recent advances show promising OoD detection performance for centralized training, and however, OoD detection in federated learning (FL) is largely overlooked, even though many security sensitive applications such as autonomous driving and voice recognition authorization are commonly trained using FL for data privacy concerns. The main challenge that prevents previous state-of-the-art OoD detection methods from being incorporated to FL is that they require large amount of real OoD samples. However, in real-world scenarios, such large-scale OoD training data can be costly or even infeasible to obtain, especially for resource-limited local devices. On the other hand, a notorious challenge in FL is data heterogeneity where each client collects non-identically and independently distributed (non-iid) data. We propose to take advantage of such heterogeneity and turn the curse into a blessing that facilitates OoD detection in FL. The key is that for each client, non-iid data from other clients (unseen external classes) can serve as an alternative to real OoD samples. Specifically, we propose a novel Federated Out-of-Distribution Synthesizer (FOSTER), which learns a class-conditional generator to synthesize virtual external-class OoD samples, and maintains data confidentiality and communication efficiency required by FL. Experimental results show that our method outperforms the state-of-the-art by 2.49%, 2.88%, 1.42% AUROC, and 0.01%, 0.89%, 1.74% ID accuracy, on CIFAR-10, CIFAR-100, and STL10, respectively. 
    more » « less
  5. Continual Test-time Adaptation (CTA) is a promising art to secure accuracy gains in continually-changing environments. The state-of-the-art adaptations improve out-of-distribution model accuracy via computation-efficient online test-time gradient descents but meanwhile cost about times of memory versus the inference, even if only a small portion of parameters are updated. Such high memory consumption of CTA substantially impedes wide applications of advanced CTA on memory-constrained devices. In this paper, we provide a novel solution, dubbed MECTA, to drastically improve the memory efficiency of gradient-based CTA. Our profiling shows that the major memory overhead comes from the intermediate cache for back-propagation, which scales by the batch size, channel, and layer number. Therefore, we propose to reduce batch sizes, adopt an adaptive normalization layer to maintain stable and accurate predictions, and stop the back-propagation caching heuristically. On the other hand, we prune the networks to reduce the computation and memory overheads in optimization and recover the parameters afterward to avoid forgetting. The proposed MECTA is efficient and can be seamlessly plugged into state-of-the-art CTA algorithms at negligible overhead on computation and memory. On three datasets, CIFAR10, CIFAR100, and ImageNet, MECTA improves the accuracy by at least 6% with constrained memory and significantly reduces the memory costs of ResNet50 on ImageNet by at least 70% with comparable accuracy. O 
    more » « less
  6. Data augmentation has been a popular method for fine-tuning pre-trained language models to increase model robustness and performance. With augmentation data coming from modifying gold train data (in-sample augmentation) or being harvested from general domain unlabeled data (out-of-sample augmentation), the quality of such data is the key to successful fine-tuning. In this paper, we propose a dynamic data selection method to select effective augmentation data from different augmentation sources according to the model’s learning stage, by identifying a set of augmentation samples that optimally facilitates the learning process of the most current model. The method firstly filters out augmentation samples with noisy pseudo labels through a curriculum learning strategy, then estimates the effectiveness of reserved augmentation data by its influence scores on the current model at every update, allowing the data selection process tightly tailored to model parameters. And the two-stage augmentation strategy considers in-sample augmentation and out-of-sample augmentation in different learning stages. Experiments with both kinds of augmentation data on a variety of sentence classification tasks show that our method outperforms strong baselines, proving the effectiveness of our method. Analysis confirms the dynamic nature of the data effectiveness and the importance of model learning stages in utilization of augmentation data. 
    more » « less
  7. Mild cognitive impairment is the prodromal stage of Alzheimer’s disease. Its detection has been a critical task for establishing cohort studies and developing therapeutic interventions for Alzheimer’s. Various types of markers have been developed for detection. For example, imaging markers from neuroimaging have shown great sensitivity, while its cost is still prohibitive for large-scale screening of early dementia. Recent advances from digital biomarkers, such as language markers, have provided an accessible and affordable alternative. While imaging markers give anatomical descriptions of the brain, language markers capture the behavior characteristics of early dementia subjects. Such differences suggest the benefits of auxiliary information from the imaging modality to improve the predictive power of unimodal predictive models based on language markers alone. However, one significant barrier to the joint analysis is that in typical cohorts, there are only very limited subjects that have both imaging and language modalities. To tackle this challenge, in this paper, we develop a novel crossmodal augmentation tool, which leverages auxiliary imaging information to improve the feature space of language markers so that a subject with only language markers can benefit from imaging information through the augmentation. Our experimental results show that the multi-modal predictive model trained with language markers and auxiliary imaging information significantly outperforms unimodal predictive models. 
    more » « less