skip to main content


Title: Measurements of Cosmic Ray Mass Composition with the IceCube Neutrino Observatory
The IceCube Neutrino Observatory is a multi-component detector at the South Pole. Besides studying high-energy neutrinos, it is capable of measuring high-energy cosmic rays from PeV to EeV. This energy region is thought to cover the transition from galactic to extragalactic sources of cosmic rays. The observatory consists of the deep in-ice IceCube array, which measures the high-energy (≥500 GeV) muonic component, and the IceTop surface array, which is sensitive to the electromagnetic and low-energy muonic part of an air shower. The primary energy and the mass composition can be measured simultaneously by applying statistical methods including modern machine-learning techniques to reconstruct cosmic ray air showers. In this contribution, we will discuss recent improvements to the reconstruction techniques, the mass composition sensitivity, and an outlook on future improved measurements with the full surface scintillator/radio array to mitigate snow accumulation and measure the air shower maximum X max using imaging air-Cherenkov telescopes IceAct.  more » « less
Award ID(s):
2019597
NSF-PAR ID:
10430166
Author(s) / Creator(s):
Editor(s):
De Mitri, I.; Barbato, F.C.T.; Boncioli, D.; Evoli, C.; Pagliaroli, G.; Salamida, F.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
283
ISSN:
2100-014X
Page Range / eLocation ID:
02007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Capone, A. ; De Vincenzi, M. ; Morselli, A. (Ed.)
    The IceCube Neutrino Observatory located at the geographic South Pole is composed of two detectors. One is the in-ice optical array, which measures high-energy muons from air showers and charged particles produced by the interaction of high-energy neutrinos in the ice. The other is an array of ice-Cherenkov tanks at the surface, called IceTop, which is used both as veto for the in-ice neutrino measurements and for detecting cosmic-ray air showers. In the next decade, the IceCube-Gen2 extension will increase the surface coverage including surface radio antennas and scintillator panels on the footprint of an extended optical array in the ice. The combination of the current surface and in-ice detectors can be exploited for the study of cosmic rays and the search for PeV gamma rays. The in-ice detector measures the high-energy muonic component of air showers, whereas the signal in IceTop is dominated by the electromagnetic component. The relative size of the muonic and electromagnetic components is different for gamma-and hadron-induced air showers. Thus, the gamma-hadron separation of cosmic rays is attempted using machine learning techniques including deep learning. Here, different approaches are presented. Finally, the prospects for the detection of PeV photons with IceCube-Gen2 will be discussed. 
    more » « less
  2. null (Ed.)
    The IceCube Neutrino Observatory is a multi-component detector at the South Pole which detects high-energy particles emerging from astrophysical events. These particles provide us with insights into the fundamental properties and behaviour of their sources. Besides its principal usage and merits in neutrino astronomy, using IceCube in conjunction with its surface array, IceTop, also makes it a unique three-dimensional cosmic-ray detector. This distinctive feature helps facilitate detailed cosmic-ray analysis in the transition region from galactic to extragalactic sources. We will present the progress made on multiple fronts to establish a framework for mass-estimation of primary cosmic rays. The first technique relies on a likelihood-based analysis of the surface signal distribution and improves upon the standard reconstruction technique. The second uses advanced methods in graph neural networks to use the full in-ice shower footprint, in addition to global shower-footprint features from IceTop. A comparison between the two methods for composition analysis as well as a possible extension of the analysis techniques for sub-PeV cosmic-ray air-showers will also be discussed. 
    more » « less
  3. Ultra-high-energy (UHE) photons are an important tool for studying the high-energy Universe. A plausible source of photons with exa-eV (EeV) energy is provided by UHE cosmic rays (UHECRs) undergoing the Greisen–Zatsepin–Kuzmin process (Greisen 1966; Zatsepin & Kuzmin 1966) or pair production process (Blumenthal 1970) on a cosmic background radiation. In this context, the EeV photons can be a probe of both UHECR mass composition and the distribution of their sources (Gelmini, Kalashev & Semikoz 2008; Hooper, Taylor & Sarkar 2011). At the same time, the possible flux of photons produced by UHE protons in the vicinity of their sources by pion photoproduction or inelastic nuclear collisions would be noticeable only for relatively near sources, as the attenuation length of UHE photons is smaller than that of UHE protons; see, for example, Bhattacharjee & Sigl (2000) for a review. There also exists a class of so-called top-down models of UHECR generation that efficiently produce the UHE photons, for instance by the decay of heavy dark-matter particles (Berezinsky, Kachelriess & Vilenkin 1997; Kuzmin & Rubakov 1998) or by the radiation from cosmic strings (Berezinsky, Blasi & Vilenkin 1998). The search for the UHE photons was shown to be the most sensitive method of indirect detection of heavy dark matter (Kalashev & Kuznetsov 2016, 2017; Kuznetsov 2017; Kachelriess, Kalashev & Kuznetsov 2018; Alcantara, Anchordoqui & Soriano 2019). Another fundamental physics scenario that could be tested with UHE photons (Fairbairn, Rashba & Troitsky 2011) is the photon mixing with axion-like particles (Raffelt & Stodolsky 1988), which could be responsible for the correlation of UHECR events with BL Lac type objects observed by the High Resolution Fly’s Eye (HiRes) experiment (Gorbunov et al. 2004; Abbasi et al. 2006). In most of these scenarios, a clustering of photon arrival directions, rather than diffuse distribution, is expected, so point-source searches can be a suitable test for photon - axion-like particle mixing models. Finally, UHE photons could also be used as a probe for the models of Lorentz-invariance violation (Coleman & Glashow 1999; Galaverni & Sigl 2008; Maccione, Liberati & Sigl 2010; Rubtsov, Satunin & Sibiryakov 2012, 2014). The Telescope Array (TA; Tokuno et al. 2012; Abu-Zayyad et al. 2013c) is the largest cosmic ray experiment in the Northern Hemisphere. It is located at 39.3° N, 112.9° W in Utah, USA. The observatory includes a surface detector array (SD) and 38 fluorescence telescopes grouped into three stations. The SD consists of 507 stations that contain plastic scintillators, each with an area of 3 m2 (SD stations). The stations are placed in the square grid with 1.2 km spacing and cover an area of ∼700 km2. The TA SD is capable of detecting extensive air showers (EASs) in the atmosphere caused by cosmic particles of EeV and higher energies. The TA SD has been operating since 2008 May. A hadron-induced EAS significantly differs from an EAS induced by a photon because the depth of the shower maximum Xmax for a photon shower is larger, and a photon shower contains fewer muons and has a more curved front (see Risse & Homola 2007 for a review). The TA SD stations are sensitive to both muon and electromagnetic components of the shower and therefore can be triggered by both hadron-induced and photon-induced EAS events. In the present study, we use 9 yr of TA SD data for a blind search for point sources of UHE photons. We utilize the statistics of the SD data, which benefit from a high duty cycle. The full Monte Carlo (MC) simulation of proton-induced and photon-induced EAS events allows us to perform the photon search up to the highest accessible energies, E ≳ 1020 eV. As the main tool for the present photon search, we use a multivariate analysis based on a number of SD parameters that make it possible to distinguish between photon and hadron primaries. While searches for diffuse UHE photons were performed by several EAS experiments, including Haverah Park (Ave et al. 2000), AGASA (Shinozaki et al. 2002; Risse et al. 2005), Yakutsk (Rubtsov et al. 2006; Glushkov et al. 2007, 2010), Pierre Auger (Abraham et al. 2007, 2008a; Bleve 2016; Aab et al. 2017c) and TA (Abu-Zayyad et al. 2013b; Abbasi et al. 2019a), the search for point sources of UHE photons has been done only by the Pierre Auger Observatory (Aab et al. 2014, 2017a). The latter searches were based on hybrid data and were limited to the 1017.3 < E < 1018.5 eV energy range. In the present paper, we use the TA SD data alone. We perform the searches in five energy ranges: E > 1018, E > 1018.5, E > 1019, E > 1019.5 and E > 1020 eV. We find no significant evidence of photon point sources in all energy ranges and we set the point-source flux upper limits from each direction in the TA field of view (FOV). The search for unspecified neutral particles was also previously performed by the TA (Abbasi et al. 2015). The limit on the point-source flux of neutral particles obtained in that work is close to the present photon point-source flux limits. 
    more » « less
  4. Abstract The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km 2 . Together, these will increase the sensitivity of the IceCube Neutrino Observatory to the electromagnetic and muonic components of cosmic-ray-induced air showers at the South Pole. The inclusion of the radio technique necessitates an expanded set of simulation and analysis tools to explore the radio-frequency emission from air showers in the 70 MHz to 350 MHz band. In this paper we describe the software modules that have been developed to work with time- and frequency-domain information within IceCube's existing software framework, IceTray, which is used by the entire IceCube collaboration. The software includes a method by which air-shower simulation, generated using CoREAS, can be reused via waveform interpolation, thus overcoming a significant computational hurdle in the field. 
    more » « less
  5. A surface array of radio antennas will enhance the performance of the IceTop array and enable new, complementary science goals. First, the accuracy for cosmic-ray air showers will be increased since the radio array provides a calorimetric measurement of the electromagnetic component and is sensitive to the position of the shower maximum. This enhanced accuracy can be used to better measure the mass composition, to search for possible mass-dependent anisotropies in the arrival directions of cosmic rays, and for more thorough tests of hadronic interaction models. Second, the sensitivity of the radio array to inclined showers will increase the sky coverage for cosmic-ray measurements. Third, the radio array can be used to search for PeV photons from the Galactic Center. Since IceTop is planned to be enhanced by a scintillator array in the near future, a radio extension sharing the same infrastructure can be installed with minimal additional effort and excellent scientific prospects. The combination of ice-Cherenkov, scintillation, and radio detectors at IceCube will provide unprecedented accuracy for the study of highenergy Galactic cosmic rays. 
    more » « less