We show variants of spectral sparsification routines can preserve the total
spanning tree counts of graphs, which by Kirchhoff's matrixtree theorem, is
equivalent to determinant of a graph Laplacian minor, or equivalently, of any SDDM matrix. Our analyses utilizes this combinatorial connection to bridge between statistical leverage scores / effective resistances and the analysis of random graphs by [Janson, Combinatorics, Probability and Computing `94]. This leads to a routine that in quadratic time, sparsifies a graph down to about $n^{1.5}$ edges in ways that preserve both the determinant and the distribution of spanning trees (provided the sparsified graph is viewed as a random object). Extending this algorithm to work with Schur complements and approximate Choleksy factorizations leads to algorithms for counting and sampling spanning trees which are nearly optimal for dense graphs.
We give an algorithm that computes a $(1 \pm \delta)$ approximation to the determinant of any SDDM matrix with constant probability in about $n^2 \delta^{2}$ time. This is the first routine for graphs that outperforms generalpurpose routines for computing determinants of arbitrary matrices. We also give an algorithm that generates in about $n^2 \delta^{2}$ time a spanning tree of a weighted undirected graph from a distribution with total variation
distance of $\delta$ from the $w$uniform distribution .
more »
« less
Subquadratic Algorithms for Kernel Matrices via Kernel Density Estimation
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency – given n input points, most kernelbased algorithms need to materialize the full n × n kernel matrix before performing any subsequent computation, thus incurring Ω(n^2) runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts.
We break the quadratic barrier and obtain subquadratic time algorithms for several fundamental linearalgebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving lin ear systems, local clustering, lowrank approximation, arboricity estimation and counting weighted triangles. We build on the recently developed Kernel Density Estimation framework, which (after preprocessing in time subquadratic in n) can return estimates of row/column sums of the kernel matrix. In particular, we de velop efficient reductions from weighted vertex and weighted edge sampling on kernel graphs, simulating random walks on kernel graphs, and importance sampling on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in sublinear (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on lowrank approximation (LRA) and spectral sparsi fication, where we observe a 9x decrease in the number of kernel evaluations over baselines for LRA and a 41x reduction in the graph size for spectral sparsification.
more »
« less
 Award ID(s):
 2022448
 NSFPAR ID:
 10430245
 Date Published:
 Journal Name:
 International Conference on Learning Representations
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this


We study fast algorithms for computing fundamental properties of a positive semidefinite kernel matrix K∈ R^{n*n} corresponding to n points x1,…,xn∈R^d. In particular, we consider estimating the sum of kernel matrix entries, along with its top eigenvalue and eigenvector. We show that the sum of matrix entries can be estimated to 1+ϵ relative error in time sublinear in n and linear in d for many popular kernels, including the Gaussian, exponential, and rational quadratic kernels. For these kernels, we also show that the top eigenvalue (and an approximate eigenvector) can be approximated to 1+ϵ relative error in time subquadratic in n and linear in d. Our algorithms represent significant advances in the best known runtimes for these problems. They leverage the positive definiteness of the kernel matrix, along with a recent line of work on efficient kernel density estimation.more » « less

null (Ed.)Recent spectral graph sparsification techniques have shown promising performance in accelerating many numerical and graph algorithms, such as iterative methods for solving large sparse matrices, spectral partitioning of undirected graphs, vectorless verification of power/thermal grids, representation learning of large graphs, etc. However, prior spectral graph sparsification methods rely on fast Laplacian matrix solvers that are usually challenging to implement in practice. This work, for the first time, introduces a solverfree approach (SFGRASS) for spectral graph sparsification by leveraging emerging spectral graph coarsening and graph signal processing (GSP) techniques. We introduce a local spectral embedding scheme for efficiently identifying spectrallycritical edges that are key to preserving graph spectral properties, such as the first few Laplacian eigenvalues and eigenvectors. Since the key kernel functions in SFGRASS can be efficiently implemented using sparsematrixvectormultiplications (SpMVs), the proposed spectral approach is simple to implement and inherently parallel friendly. Our extensive experimental results show that the proposed method can produce a hierarchy of highquality spectral sparsifiers in nearlylinear time for a variety of realworld, largescale graphs and circuit networks when compared with prior stateoftheart spectral methods.more » « less

null (Ed.)We study fast algorithms for computing basic properties of an n x n positive semidefinite kernel matrix K corresponding to n points x_1,...,x_n in R^d. In particular, we consider the estimating the sum of kernel matrix entries, along with its top eigenvalue and eigenvector. These are some of the most basic problems defined over kernel matrices. We show that the sum of matrix entries can be estimated up to a multiplicative factor of 1+epsilon in time sublinear in n and linear in d for many popular kernel functions, including the Gaussian, exponential, and rational quadratic kernels. For these kernels, we also show that the top eigenvalue (and a witnessing approximate eigenvector) can be approximated to a multiplicative factor of 1+epsilon in time subquadratic in n and linear in d. Our algorithms represent significant advances in the best known runtimes for these problems. They leverage the positive definiteness of the kernel matrix, along with a recent line of work on efficient kernel density estimation.more » « less

null (Ed.)The Sparsest Cut is a fundamental optimization problem that have been extensively studied. For planar inputs the problem is in P and can be solved in Õ(n 3 ) time if all vertex weights are 1. Despite a significant amount of effort, the best algorithms date back to the early 90’s and can only achieve O(log n)approximation in Õ(n) time or 3.5approximation in Õ(n 2 ) time [Rao, STOC92]. Our main result is an Ω(n 2−ε ) lower bound for Sparsest Cut even in planar graphs with unit vertex weights, under the (min, +)Convolution conjecture, showing that approxima tions are inevitable in the nearlinear time regime. To complement the lower bound, we provide a 3.3approximation in nearlinear time, improving upon the 25year old result of Rao in both time and accuracy. We also show that our lower bound is not far from optimal by observing an exact algorithm with running time Õ(n 5/2 ) improving upon the Õ(n 3 ) algorithm of Park and Phillips [STOC93]. Our lower bound accomplishes a repeatedly raised challenge by being the first finegrained lower bound for a natural planar graph problem in P. Building on our construction we prove nearquadratic lower bounds under SETH for variants of the closest pair problem in planar graphs, and use them to show that the popular AverageLinkage procedure for Hierarchical Clustering cannot be simulated in truly subquadratic time. At the core of our constructions is a diamondlike gadget that also settles the complexity of Diameter in distributed planar networks. We prove an Ω(n/ log n) lower bound on the number of communication rounds required to compute the weighted diameter of a network in the CONGET model, even when the underlying graph is planar and all nodes are D = 4 hops away from each other. This is the first poly(n) lower bound in the planardistributed setting, and it complements the recent poly(D, log n) upper bounds of Li and Parter [STOC 2019] for (exact) unweighted diameter and for (1 + ε) approximate weighted diameter.more » « less