Africa has over 2000 indigenous languages but they are under-represented in NLP research due to lack of datasets. In recent years, there have been progress in developing labelled corpora for African languages. However, they are often available in a single domain and may not generalize to other domains. In this paper, we focus on the task of sentiment classification for cross-domain adaptation. We create a new dataset, NollySenti—based on the Nollywood movie reviews for five languages widely spoken in Nigeria (English, Hausa, Igbo, Nigerian-Pidgin, and Yorùbá). We provide an extensive empirical evaluation using classical machine learning methods and pre-trained language models. Leveraging transfer learning, we compare the performance of cross-domain adaptation from Twitter domain, and cross-lingual adaptation from English language. Our evaluation shows that transfer from English in the same target domain leads to more than 5% improvement in accuracy compared to transfer from Twitter in the same language. To further mitigate the domain difference, we leverage machine translation (MT) from English to other Nigerian languages, which leads to a further improvement of 7% over cross-lingual evaluation. While MT to low-resource languages are often of low quality, through human evaluation, we show that most of the translated sentences preserve the sentiment of the original English reviews.
more »
« less
An Empirical Study of Domain Adaptation: Are We Really Learning Transferable Representations?
Deep learning often relies on the availability of a large amount of high-quality labeled data, which can be very limited in novel domains. To address such data scarcity, domain adaptation is one promising approach that allows for deep networks to leverage large amounts of available data from a source domain to enhance the model’s efficacy on the target domain of interest. However, while there is a plethora of alternate models for domain adaptation proposed over many years in the literature, there is a dearth of studies that objectively compare the relative effectiveness of these models in a rigorous, empirical study. To fill this gap, we provide a thorough, unbiased, empirical study of five state-of-the-art (SOTA) deep domain adaptation models proposed over the past 6 years whose codes are publicly available. Models are evaluated on the complex and diverse domain adaptation tasks featured in the DomainNet benchmark dataset as well as the popular Office-31 dataset. Our results suggest that (1) all 5 models perform similarly, on average, and do not even significantly beat the oldest model, and (2) counter to their intended purpose, the transfer loss functions in the literature do not contribute significantly to learning transferable representations. Our observations suggest that domain adaptation research needs to more thoroughly compare newly proposed models against existing works, along with assessing their loss functions’ utility thoroughly. Our code and data splits are made public for reproducibility of results by the community.
more »
« less
- Award ID(s):
- 2021871
- PAR ID:
- 10430298
- Date Published:
- Journal Name:
- 2022 IEEE International Conference on Big Data (Big Data)
- Page Range / eLocation ID:
- 5504 - 5513
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent years have witnessed the great success of deep learning models in semantic segmentation. Nevertheless, these models may not generalize well to unseen image domains due to the phenomenon of domain shift. Since pixel-level annotations are laborious to collect, developing algorithms which can adapt labeled data from source domain to target domain is of great significance. To this end, we propose self-ensembling attention networks to reduce the domain gap between different datasets. To the best of our knowledge, the proposed method is the first attempt to introduce selfensembling model to domain adaptation for semantic segmentation, which provides a different view on how to learn domain-invariant features. Besides, since different regions in the image usually correspond to different levels of domain gap, we introduce the attention mechanism into the proposed framework to generate attention-aware features, which are further utilized to guide the calculation of consistency loss in the target domain. Experiments on two benchmark datasets demonstrate that the proposed framework can yield competitive performance compared with the state of the art methods.more » « less
-
Abstract BackgroundThe research gap addressed in this study is the applicability of deep neural network (NN) models on wearable sensor data to recognize different activities performed by patients with Parkinson’s Disease (PwPD) and the generalizability of these models to PwPD using labeled healthy data. MethodsThe experiments were carried out utilizing three datasets containing wearable motion sensor readings on common activities of daily living. The collected readings were from two accelerometer sensors. PAMAP2 and MHEALTH are publicly available datasets collected from 10 and 9 healthy, young subjects, respectively. A private dataset of a similar nature collected from 14 PwPD patients was utilized as well. Deep NN models were implemented with varying levels of complexity to investigate the impact of data augmentation, manual axis reorientation, model complexity, and domain adaptation on activity recognition performance. ResultsA moderately complex model trained on the augmented PAMAP2 dataset and adapted to the Parkinson domain using domain adaptation achieved the best activity recognition performance with an accuracy of 73.02%, which was significantly higher than the accuracy of 63% reported in previous studies. The model’s F1 score of 49.79% significantly improved compared to the best cross-testing of 33.66% F1 score with only data augmentation and 2.88% F1 score without data augmentation or domain adaptation. ConclusionThese findings suggest that deep NN models originating on healthy data have the potential to recognize activities performed by PwPD accurately and that data augmentation and domain adaptation can improve the generalizability of models in the healthy-to-PwPD transfer scenario. The simple/moderately complex architectures tested in this study could generalize better to the PwPD domain when trained on a healthy dataset compared to the most complex architectures used. The findings of this study could contribute to the development of accurate wearable-based activity monitoring solutions for PwPD, improving clinical decision-making and patient outcomes based on patient activity levels.more » « less
-
Classification models trained on data from one source may underperform when tested on data acquired from different sources due to shifts in data distributions, which limit the models’ generalizability in real-world applications. Domain adaptation methods proposed to align such shifts in source-target data distributions use contrastive learning or adversarial techniques with or without internal cluster alignment. The intracluster alignment is performed using standalone k-means clustering on image embedding. This paper introduces a novel deep clustering approach to align cluster distributions in tandem with adapting source and target data distributions. Our method learns and aligns a mixture of cluster distributions in the unlabeled target domain with those in the source domain in a unified deep representation learning framework. Experiments demonstrate that intra-cluster alignment improves classification accuracy in nine out of ten domain adaptation examples. These improvements range between 0.3% and 2.0% compared to k-means clustering of embedding and between 0.4% and 5.8% compared to methods without class-level alignment. Unlike current domain adaptation methods, the proposed cluster distribution-based deep learning provides a quantitative and explainable measure of distribution shifts in data domains. We have publicly shared the source code for the algorithm implementation.more » « less
-
null (Ed.)Human activity recognition (HAR) from wearable sensors data has become ubiquitous due to the widespread proliferation of IoT and wearable devices. However, recognizing human activity in heterogeneous environments, for example, with sensors of different models and make, across different persons and their on-body sensor placements introduces wide range discrepancies in the data distributions, and therefore, leads to an increased error margin. Transductive transfer learning techniques such as domain adaptation have been quite successful in mitigating the domain discrepancies between the source and target domain distributions without the costly target domain data annotations. However, little exploration has been done when multiple distinct source domains are present, and the optimum mapping to the target domain from each source is not apparent. In this paper, we propose a deep Multi-Source Adversarial Domain Adaptation (MSADA) framework that opportunistically helps select the most relevant feature representations from multiple source domains and establish such mappings to the target domain by learning the perplexity scores. We showcase that the learned mappings can actually reflect our prior knowledge on the semantic relationships between the domains, indicating that MSADA can be employed as a powerful tool for exploratory activity data analysis. We empirically demonstrate that our proposed multi-source domain adaptation approach achieves 2% improvement with OPPORTUNITY dataset (cross-person heterogeneity, 4 ADLs), whereas 13% improvement on DSADS dataset (cross-position heterogeneity, 10 ADLs and sports activities).more » « less
An official website of the United States government

