skip to main content


This content will become publicly available on June 5, 2024

Title: F3: Serving Files Efficiently in Serverless Computing
Serverless platforms offer on-demand computation and represent a significant shift from previous platforms that typically required resources to be pre-allocated (e.g., virtual machines). As serverless platforms have evolved, they have become suitable for a much wider range of applications than their original use cases. However, storage access remains a pain point that holds serverless back from becoming a completely generic computation platform. Existing storage for serverless typically uses an object interface. Although object APIs are simple to use, they lack the richness, versatility, and performance of file based APIs. Additionally, there is a large body of existing applications that relies on file-based interfaces. The lack of file based storage options prevents these applications from being ported to serverless environments. In this paper, we present F3, a file system that offers features to improve file access in serverless platforms: (1) efficient handling of ephemeral data, by placing ephemeral and non-ephemeral data on storage that exists at a different points along the durability-performance tradeoff continuum, (2) locality-aware data scheduling, and (3) efficient reading while writing. We modified OpenWhisk to support attaching file-based storage and to leverage F3's features using hints. Our prototype evaluation of F3 shows improved performance of up to 1.5--6.5x compared to existing storage systems.  more » « less
Award ID(s):
2106263 2106434 1900706
NSF-PAR ID:
10430324
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The 16th ACM International Systems and Storage Conference (SYSTOR '23)
Page Range / eLocation ID:
8 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Internet-scale web applications are becoming increasingly storage-intensive and rely heavily on in-memory object caching to attain required I/O performance. We argue that the emerging serverless computing paradigm provides a well-suited, cost-effective platform for object caching. We present InfiniCache, a first-of-its-kind in-memory object caching system that is completely built and deployed atop ephemeral serverless functions. InfiniCache exploits and orchestrates serverless functions' memory resources to enable elastic pay-per-use caching. InfiniCache's design combines erasure coding, intelligent billed duration control, and an efficient data backup mechanism to maximize data availability and cost-effectiveness while balancing the risk of losing cached state and performance. We implement InfiniCache on AWS Lambda and show that it: (1) achieves 31 – 96× tenant-side cost savings compared to AWS ElastiCache for a large-object-only production workload, (2) can effectively provide 95.4% data availability for each one hour window, and (3) enables comparative performance seen in a typical in-memory cache. 
    more » « less
  2. Ease of use and transparent access to elastic resources have attracted many applications away from traditional platforms toward serverless functions. Many of these applications, such as machine learning, could benefit significantly from GPU acceleration. Unfortunately, GPUs remain inaccessible from serverless functions in modern production settings. We present DGSF, a platform that transparently enables serverless functions to use GPUs through general purpose APIs such as CUDA. DGSF solves provisioning and utilization challenges with disaggregation, serving the needs of a potentially large number of functions through virtual GPUs backed by a small pool of physical GPUs on dedicated servers. Disaggregation allows the provider to decouple GPU provisioning from other resources, and enables significant benefits through consolidation. We describe how DGSF solves GPU disaggregation challenges including supporting API transparency, hiding the latency of communication with remote GPUs, and load-balancing access to heavily shared GPUs. Evaluation of our prototype on six workloads shows that DGSF’s API remoting optimizations can improve the runtime of a function by up to 50% relative to unoptimized DGSF. Such optimizations, which aggressively remove GPU runtime and object management latency from the critical path, can enable functions running over DGSF to have a lower end-to-end time than when running on a GPU natively. By enabling GPU sharing, DGSF can reduce function queueing latency by up to 53%. We use DGSF to augment AWS Lambda with GPU support, showing similar benefits. 
    more » « less
  3. Serverless computing has freed developers from the burden of managing their own platform and infrastructure, allowing them to rapidly prototype and deploy applications. Despite its surging popularity, however, serverless raises a number of concerning security implications. Among them is the difficulty of investigating intrusions – by decomposing traditional applications into ephemeral re-entrant functions, serverless has enabled attackers to conceal their activities within legitimate workflows, and even prevent root cause analysis by abusing warm container reuse policies to break causal paths. Unfortunately, neither traditional approaches to system auditing nor commercial serverless security products provide the transparency needed to accurately track these novel threats. In this work, we propose ALASTOR, a provenance-based auditing framework that enables precise tracing of suspicious events in serverless applications. ALASTOR records function activity at both system and application layers to capture a holistic picture of each function instances' behavior. It then aggregates provenance from different functions at a central repository within the serverless platform, stitching it together to produce a global data provenance graph of complex function workflows. ALASTOR is both function and language-agnostic, and can easily be integrated into existing serverless platforms with minimal modification. We implement ALASTOR for the OpenFaaS platform and evaluate its performance using the well-established Nordstrom Hello,Retail! application, discovering in the process that ALASTOR imposes manageable overheads (13.74%), in exchange for significantly improved forensic capabilities as compared to commercially-available monitoring tools. To our knowledge, ALASTOR is the first auditing framework specifically designed to satisfy the operational requirements of serverless platforms. 
    more » « less
  4. null (Ed.)
    Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern and thus, offers a strong level of privacy for data outsourcing. An ideal ORAM scheme is expected to offer desirable properties such as low client bandwidth, low server computation overhead, and the ability to compute over encrypted data. S3ORAM (CCS’17) is an efficient active ORAM scheme, which takes advantage of secret sharing to provide ideal properties for data outsourcing such as low client bandwidth, low server computation and low delay. Despite its merits, S3ORAM only offers security in the semi-honest setting. In practice, an ORAM protocol is likely to operate in the presence of malicious adversaries who might deviate from the protocol to compromise the client privacy. In this paper, we propose MACAO, a new multi-server ORAM framework, which offers integrity, access pattern obliviousness against active adversaries, and the ability to perform secure computation over the accessed data. MACAO harnesses authenticated secret sharing techniques and tree-ORAM paradigm to achieve low client communication, efficient server computation, and low storage overhead at the same time. We fully implemented MACAO and conducted extensive experiments in real cloud platforms (Amazon EC2) to validate the performance of MACAO compared with the state-of-the-art. Our results indicate that MACAO can achieve comparable performance to S3ORAM while offering security against malicious adversaries. MACAO is a suitable candidate for integration into distributed file systems with encrypted computation capabilities towards enabling an oblivious functional data outsourcing infrastructure. 
    more » « less
  5. Dynamic Searchable Symmetric Encryption (DSSE) allows to delegate keyword search and file update over an encrypted database via encrypted indexes, and therefore provides opportunities to mitigate the data privacy and utilization dilemma in cloud storage platforms. Despite its merits, recent works have shown that efficient DSSE schemes are vulnerable to statistical attacks due to the lack of forward-privacy, whereas forward-private DSSE schemes suffers from practicality concerns as a result of their extreme computation overhead. Due to significant practical impacts of statistical attacks, there is a critical need for new DSSE schemes that can achieve the forward-privacy in a more practical and efficient manner. We propose a new DSSE scheme that we refer to as Forward-private Sublinear DSSE (FS-DSSE). FS-DSSE harnesses special secure update strategies and a novel caching strategy to reduce the computation cost of repeated queries. Therefore, it achieves forward-privacy, sublinear search complexity, low end-to-end delay, and parallelization capability simultaneously. We fully implemented our proposed method and evaluated its performance on a real cloud platform. Our experimental evaluation results showed that the proposed scheme is highly secure and highly efficient compared with state-of-the-art DSSE techniques. Specifically, FS-DSSE is up to three magnitude of times faster than forward-secure DSSE counterparts, depending on the frequency of the searched keyword in the database. 
    more » « less