skip to main content


This content will become publicly available on June 28, 2024

Title: Impacts of the Marine Technology Boom: Ocean Literacy Now Requires Data Literacy
New technologies are continually being placed in the ocean, constantly collecting ocean data in real-time. As a result, Data Literacy is now a necessary learning goal for supporting students' Ocean Literacy. The newest ships in the U.S. Academic Research Fleet, the Regional Class Research Vessels (RCRVs), are being built with the aim of supporting data literacy through outreach and education, with aid from a forthcoming real-time data portal. To understand how the RCRV’s outreach and education initiatives can best support data and ocean literacy, while also facilitating intentional engagement with minoritized populations, a three-phase research strategy was conducted over three years. The objective was to determine promising practices in data literacy education and shipboard outreach that are also culturally responsive. The first phase of the research interviewed experts in the fields of teaching, data literacy, shipboard education, and community engagement in order to generate recommendations. The second phase was an assessment of a three-day data literacy high-school curriculum utilizing research vessel data. The third phase examined the success of potential culturally responsive data literacy curricular frameworks and teaching practices in an afterschool pilot program for Latinx youth. The research determined that in a world where students have never ending access to data, data literacy education must be scaffolded throughout a student's life. Data used in education must be contextual and relatable and the best tools for data literacy learning are designed for teachers and students. As new knowledge is being generated about the ocean through new technologies continually collecting data, ocean literacy can no longer exist without data literacy.  more » « less
Award ID(s):
1748726
NSF-PAR ID:
10430351
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Current: The Journal of Marine Education
Volume:
37
Issue:
2
ISSN:
0889-5546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this BoF we discuss the tenets of culturally responsive computer science and how teachers, professors and providers of professional development can include culturally responsive perspectives in their classes. In contrast to other academic fields, which typically include rigid curricular tracks ostensibly based on academic performance, talent, or ability that pose structural barriers to access to rigorous academic instruction for underrepresented students, the field of computer science education is explicitly focused on broadening participation, as evidenced by the SIGCSE community's consistent emphasis on equitable representation. Culturally responsive computing (CRC) is founded on culturally responsive teaching (CRT) and on CRT's three tenets: asset building (in contrast to deficit approaches), reflection, and connectedness. CRC frames these tenets for the specifics of computing education. CRC's tenet that all students are capable of digital innovation should drive teachers' interactions and relationships with students. CRC also requires that teachers be continually reflective about their privilege and constraints and how those are connected with our worldviews. This topic is significant because teachers must be connected to their students in non-traditional ways that prize diversity as an asset to innovation. The participants are expected to include professors, lecturers, high school teachers and industry experts who are interested in employing culturally responsive computing approaches in their own teaching and professional development activities. A major goal of the BoF is to establish connections among the participants to promote the sharing of resources and best practices. 
    more » « less
  2. null (Ed.)
    Miami Dade College, based on demands in the workforce, has focused on creating emerging technology education, particularly Cloud technology. Business Cloud migration has accelerated over the last several years, and companies around the world are investing in their future with the cloud. With the increased demand for cloud-skilled professionals the last four years, we launched a cloud literacy initiative to meet cloud talent needs. This initiative aims to provide our students in the computing/IT fields with the knowledge, abilities and skills needed to accelerate their cloud-related learning. With the support of NSF ATE, we collaborated with Amazon Web Services (AWS) to create a new pathway for the next generation of cloud computing professionals. The course sequence was designed in conjunction with an AWS Educate team assisting in the design of course sequencing and degree plans to leverage their educational experience in teaching cloud technologies. The core curriculum designed for the cloud literacy initiative leveraged an existing pathway for an associate degree in networking technology, and then partially pulled classes from the design of the bachelor’s in information systems technology degree. The classes identified, used current offerings across our programs and included a focus on the supporting infrastructure of cloud systems: Databases, Linux OS, and Networking. With these three foundational classes that were cloudified, three cloud-focused courses based on industry certifications were developed: Cloud Essentials for AWS Cloud Practitioner and Cloud Infrastructure and Services for AWS Solutions Architect certifications with a capstone class completing the academic pathway. This new curriculum includes pedagogical changes to utilize project-based learning by incorporating resources and learning from multiple sources to best mimic real-world application, data, and design attributes. In addition to the associate degree, a college credit certificate in cloud computing was created to strengthen (re-)entering students in the workforce and dual enrollment students with credentials and employability skills by using high impact educational practices. Our cloud curriculum incorporates project-based learning approach, a real-world experience using the cloud technology. This poster shares strategies and pedagogical tools for teaching a cloud-focused curriculum for broader impact and student success. 
    more » « less
  3. There is a critical need for research-based active learning instructional materials for the teaching and learning of STEM in online courses. Every year, hundreds of thousands of undergraduate non-science majors enroll in general education astronomy courses to fulfill their institution’s liberal arts requirements. When designing instructional materials for this population of learners, a central focus must be to help learners become more scientifically and data literate. As such, we developed a new, three-part, curricular model that was used to inform the creation of active-learning instructional materials designed for use in online courses. The instructional materials were designed to help introductory astronomy students engage meaningfully with science while simultaneously improving their data literacy self-efficacy (especially as it pertained to making evidence-based conclusions when presented with a variety of data representations). We conducted a pilot study of these instructional materials at nine different colleges and universities to better understand whether students’ engagement with these materials lead to improved beliefs and self-efficacy. The results of our student survey analysis showed statistically significant changes on survey items that assessed students’ beliefs about science engagement, citizen science, and their data literacy skills. Additionally, we assessed whether faculty who implemented these materials were able to easily incorporate them into existing online astronomy courses. The instructor feedback emphasized that our curriculum development model did successfully inform the creation of easy-to-implement instructional materials, generating the potential for widespread dissemination and use at the undergraduate level. 
    more » « less
  4. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire of strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1. 
    more » « less
  5. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire of strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1. 
    more » « less