skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Fundamental Limits of Structure-Agnostic Functional Estimation
Many recent developments in causal inference, and functional estimation problems more generally, have been motivated by the fact that classical one-step (first-order) debiasing methods, or their more recent sample-split double machine-learning avatars, can outperform plugin estimators under surprisingly weak conditions. These first-order corrections improve on plugin estimators in a black-box fashion, and consequently are often used in conjunction with powerful off-the-shelf estimation methods. These first-order methods are however provably suboptimal in a minimax sense for functional estimation when the nuisance functions live in Holder-type function spaces. This suboptimality of first-order debiasing has motivated the development of "higher-order" debiasing methods. The resulting estimators are, in some cases, provably optimal over Holder-type spaces, but both the estimators which are minimax-optimal and their analyses are crucially tied to properties of the underlying function space. In this paper we investigate the fundamental limits of structure-agnostic functional estimation, where relatively weak conditions are placed on the underlying nuisance functions. We show that there is a strong sense in which existing first-order methods are optimal. We achieve this goal by providing a formalization of the problem of functional estimation with black-box nuisance function estimates, and deriving minimax lower bounds for this problem. Our results highlight some clear tradeoffs in functional estimation -- if we wish to remain agnostic to the underlying nuisance function spaces, impose only high-level rate conditions, and maintain compatibility with black-box nuisance estimators then first-order methods are optimal. When we have an understanding of the structure of the underlying nuisance functions then carefully constructed higher-order estimators can outperform first-order estimators.  more » « less
Award ID(s):
2113684 1763734
PAR ID:
10430398
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
arXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Robust estimation is an important problem in statistics which aims at providing a reasonable estimator when the data-generating distribution lies within an appropriately defined ball around an uncontaminated distribution. Although minimax rates of estimation have been established in recent years, many existing robust estimators with provably optimal convergence rates are also computationally intractable. In this paper, we study several estimation problems under a Wasserstein contamination model and present computationally tractable estimators motivated by generative adversarial networks (GANs). Specifically, we analyze the properties of Wasserstein GAN-based estimators for location estimation, covariance matrix estimation and linear regression and show that our proposed estimators are minimax optimal in many scenarios. Finally, we present numerical results which demonstrate the effectiveness of our estimators. 
    more » « less
  2. Abstract The conditional moment problem is a powerful formulation for describing structural causal parameters in terms of observables, a prominent example being instrumental variable regression. We introduce a very general class of estimators called the variational method of moments (VMM), motivated by a variational minimax reformulation of optimally weighted generalized method of moments for finite sets of moments. VMM controls infinitely for many moments characterized by flexible function classes such as neural nets and kernel methods, while provably maintaining statistical efficiency unlike existing related minimax estimators. We also develop inference algorithms and demonstrate the empirical strengths of VMM estimation and inference in experiments. 
    more » « less
  3. We study the problem of estimating an unknown function from noisy data using shallow ReLU neural networks. The estimators we study minimize the sum of squared data-fitting errors plus a regularization term proportional to the squared Euclidean norm of the network weights. This minimization corresponds to the common approach of training a neural network with weight decay. We quantify the performance (mean-squared error) of these neural network estimators when the data-generating function belongs to the second-order Radon-domain bounded variation space. This space of functions was recently proposed as the natural function space associated with shallow ReLU neural networks. We derive a minimax lower bound for the estimation problem for this function space and show that the neural network estimators are minimax optimal up to logarithmic factors. This minimax rate is immune to the curse of dimensionality. We quantify an explicit gap between neural networks and linear methods (which include kernel methods) by deriving a linear minimax lower bound for the estimation problem, showing that linear methods necessarily suffer the curse of dimensionality in this function space. As a result, this paper sheds light on the phenomenon that neural networks seem to break the curse of dimensionality. 
    more » « less
  4. Estimation of heterogeneous causal effects—that is, how effects of policies and treatments vary across subjects—is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper, we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a nonstandard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid. 
    more » « less
  5. We consider off-policy evaluation (OPE) in Partially Observable Markov Decision Processes (POMDPs), where the evaluation policy depends only on observable variables and the behavior policy depends on unobservable latent variables. Existing works either assume no unmeasured confounders, or focus on settings where both the observation and the state spaces are tabular. In this work, we first propose novel identification methods for OPE in POMDPs with latent confounders, by introducing bridge functions that link the target policy’s value and the observed data distribution. We next propose minimax estimation methods for learning these bridge functions, and construct three estimators based on these estimated bridge functions, corresponding to a value function-based estimator, a marginalized importance sampling estimator, and a doubly-robust estimator. Our proposal permits general function approximation and is thus applicable to settings with continuous or large observation/state spaces. The nonasymptotic and asymptotic properties of the proposed estimators are investigated in detail. A Python implementation of our proposal is available at https://github.com/jiaweihhuang/ Confounded-POMDP-Exp. 
    more » « less