skip to main content

Title: Fractal Dimensions of Biomass Burning Aerosols from TEM Images Using the Box-Grid and Nested Squares Methods
The fractal dimension is a key parameter in quantifying the morphology of aerosol aggregates, which is necessary to understand their radiative impact. Here we used Transmission Electron Microscopy (TEM) images to determine 2D fractal dimensions using the nested square and box-grid method and used two different empirical equations to obtain the 3D fractal dimensions. The values ranged from 1.70 ± 0.05 for pine to 1.82 ± 0.07 for Eucalyptus, with both methods giving nearly identical results using one of the empirical equations and the other overestimated the 3D values significantly when compared to other values in the literature. The values we obtained are comparable to the fractal dimensions of fresh aerosols in the literature and were dependent on fuel type and combustion condition. Although these methods accurately calculated the fractal dimension, they have shortcomings if the images are not of the highest quality. While there are many ways of determining the fractal dimension of linear features, we conclude that the application of every method requires careful consideration of a range of methodological concerns.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The complexity of ammonoid cephalopod sutures has made them useful as a characteristic for distinguishing taxa and may also reflect variations in modes of life. Sutural complexity is due to the unique pattern of saddles and lobes that vary in size, amplitude, and wavelength. These patterns are characterized as having various degrees of complexity that can be assigned numerical values. Two of the most used quantitative sutural complexity metrics are fractal dimension (FD) and sinuosity index (SI). Our research goal was to document differences between suture complexities of various taxa of two Cretaceous ammonoid superfamilies, Desmoceratoidea and Acanthoceratoidea, and assess how these complexities changed over time. Previous workers have used various procedures to quantify suture complexity, including measuring the suture lines by hand or using software such as ImageJ to take measurements. While these methods can provide accurate results, they are time consuming and therefore restrict the realistic sample size. We have developed a semi-automated method using AutoCAD (2023) engineering software to quantify both FD and SI of suture patterns. Using Adobe Illustrator, drawings of suture patterns taken from the literature were first converted from raster images to vector files in order for AutoCAD to read them. AutoCAD then automatically scaled and measured each suture pattern in a short amount of time, which allowed for a large sample of 78 suture patterns to be quickly analyzed. Preliminary results show that desmoceratoids had significantly more complex suture patterns than most acanthoceratoids, and that acanthoceratoid suture complexity may have increased through the Late Cenomanian stage before dropping after the Cenomanian-Turonian mass extinction. Using this new method of quantifying suture pattern complexity will expedite the measuring process and allow larger sample sizes in future analyses. 
    more » « less
  2. Background and Objective: Higuchi’s method of determining fractal dimension (HFD) occupies a valuable place in the study of a wide variety of physical signals. In comparison to other methods, it provides more rapid, accurate estimations for the entire range of possible fractal dimensions. However, a major difficulty in using the method is the correct choice of tuning parameter (kmax) to compute the most accurate results. In the past researchers have used various ad hoc methods to determine the appropriate kmax choice for their particular data. We provide a more objective method of determining, a priori, the best value for the tuning parameter, given a particular length data set. Methods: We create numerous simulations of fractional Brownian motion to perform Monte Carlo simulations of the distribution of the calculated HFD. Results: Experimental results show that HFD depends not only on kmax but also on the length of the time series, which enable derivation of an expression to find the appropriate kmax for an input time series of unknown fractal dimension. Conclusion: The Higuchi method should not be used indiscriminately without reference to the type of data whose fractal dimension is examined. Monte Carlo simulations with different fractional Brownian motions increases the confidence of evaluation results. 
    more » « less
  3. Abstract

    Spatial patterning of different cell types is crucial for tissue engineering and is characterized by the formation of sharp boundary between segregated groups of cells of different lineages. The cell−cell boundary layers, depending on the relative adhesion forces, can result in kinks in the border, similar to fingering patterns between two viscous partially miscible fluids which can be characterized by its fractal dimension. This suggests that mathematical models used to analyze the fingering patterns can be applied to cell migration data as a metric for intercellular adhesion forces. In this study, we develop a novel computational analysis method to characterize the interactions between blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), which form segregated vasculature by recognizing each other through podoplanin. We observed indiscriminate mixing with LEC−LEC and BEC−BEC pairs and a sharp boundary between LEC−BEC pair, and fingering-like patterns with pseudo-LEC−BEC pairs. We found that the box counting method yields fractal dimension between 1 for sharp boundaries and 1.3 for indiscriminate mixing, and intermediate values for fingering-like boundaries. We further verify that these results are due to differential affinity by performing random walk simulations with differential attraction to nearby cells and generate similar migration pattern, confirming that higher differential attraction between different cell types result in lower fractal dimensions. We estimate the characteristic velocity and interfacial tension for our simulated and experimental data to show that the fractal dimension negatively correlates with capillary number (Ca), further indicating that the mathematical models used to study viscous fingering pattern can be used to characterize cell−cell mixing. Taken together, these results indicate that the fractal analysis of segregation boundaries can be used as a simple metric to estimate relative cell−cell adhesion forces between different cell types.

    more » « less
  4. Abstract

    Animals’ sensory systems evolved to efficiently process information from their environmental niches. Niches often include irregular shapes and rough textures (e.g., jagged terrain, canopy outlines) that must be navigated to find food, escape predators, and master other fitness-related challenges. For most primates, vision is the dominant sensory modality and thus, primates have evolved systems for processing complicated visual stimuli. One way to quantify information present in visual stimuli in natural scenes is evaluating their fractal dimension. We hypothesized that sensitivity to complicated geometric forms, indexed by fractal dimension, is an evolutionarily conserved capacity, and tested this capacity in rhesus macaques (Macaca mulatta). Monkeys viewed paired black and white images of simulated self-similar contours that systematically varied in fractal dimension while their attention to the stimuli was measured using noninvasive infrared eye tracking. They fixated more frequently on, dwelled for longer durations on, and had attentional biases towards images that contain boundary contours with higher fractal dimensions. This indicates that, like humans, they discriminate between visual stimuli on the basis of fractal dimension and may prefer viewing informationally rich visual stimuli. Our findings suggest that sensitivity to fractal dimension may be a wider ability of the vertebrate vision system.

    more » « less
  5. Nie, Qing (Ed.)
    The analysis of single-cell genomics data presents several statistical challenges, and extensive efforts have been made to produce methods for the analysis of this data that impute missing values, address sampling issues and quantify and correct for noise. In spite of such efforts, no consensus on best practices has been established and all current approaches vary substantially based on the available data and empirical tests. The k-Nearest Neighbor Graph (kNN-G) is often used to infer the identities of, and relationships between, cells and is the basis of many widely used dimensionality-reduction and projection methods. The kNN-G has also been the basis for imputation methods using, e.g ., neighbor averaging and graph diffusion. However, due to the lack of an agreed-upon optimal objective function for choosing hyperparameters, these methods tend to oversmooth data, thereby resulting in a loss of information with regard to cell identity and the specific gene-to-gene patterns underlying regulatory mechanisms. In this paper, we investigate the tuning of kNN- and diffusion-based denoising methods with a novel non-stochastic method for optimally preserving biologically relevant informative variance in single-cell data. The framework, Denoising Expression data with a Weighted Affinity Kernel and Self-Supervision (DEWÄKSS), uses a self-supervised technique to tune its parameters. We demonstrate that denoising with optimal parameters selected by our objective function (i) is robust to preprocessing methods using data from established benchmarks, (ii) disentangles cellular identity and maintains robust clusters over dimension-reduction methods, (iii) maintains variance along several expression dimensions, unlike previous heuristic-based methods that tend to oversmooth data variance, and (iv) rarely involves diffusion but rather uses a fixed weighted kNN graph for denoising. Together, these findings provide a new understanding of kNN- and diffusion-based denoising methods. Code and example data for DEWÄKSS is available at . 
    more » « less