Transition from laminar to turbulent flow occurring over a smooth surface is a particularly important route to chaos in fluid dynamics. It often occurs via sporadic inception of spatially localized patches (spots) of turbulence that grow and merge downstream to become the fully turbulent boundary layer. A long-standing question has been whether these incipient spots already contain properties of high-Reynolds-number, developed turbulence. In this study, the question is posed for geometric scaling properties of the interface separating turbulence within the spots from the outer flow. For high-Reynolds-number turbulence, such interfaces are known to display fractal scaling laws with a dimension , where the 1/3 excess exponent above 2 (smooth surfaces) follows from Kolmogorov scaling of velocity fluctuations. The data used in this study are from a direct numerical simulation, and the spot boundaries (interfaces) are determined by using an unsupervised machine-learning method that can identify such interfaces without setting arbitrary thresholds. Wide separation between small and large scales during transition is provided by the large range of spot volumes, enabling accurate measurements of the volume–area fractal scaling exponent. Measurements show a dimension of over almost 5 decades of spot volume, i.e., trends fully consistent with high-Reynolds-number turbulence. Additional observations pertaining to the dependence on height above the surface are also presented. Results provide evidence that turbulent spots exhibit high-Reynolds-number fractal-scaling properties already during early transitional and nonisotropic stages of the flow evolution.
more »
« less
Fractal contours: Order, chaos, and art
Over the recent decades, a variety of indices, such as the fractal dimension, Hurst exponent, or Betti numbers, have been used to characterize structural or topological properties of art via a singular parameter, which could then help to classify artworks. A single fractal dimension, in particular, has been commonly interpreted as characteristic of the entire image, such as an abstract painting, whether binary, gray-scale, or in color, and whether self-similar or not. There is now ample evidence, however, that fractal exponents obtained using the standard box-counting are strongly dependent on the details of the method adopted, and on fitting straight lines to the entire scaling plots, which are typically nonlinear. Here, we propose a more discriminating approach with the aim of obtaining robust scaling plots and extracting relevant information encoded in them without any fitting routines. To this goal, we carefully average over all possible grid locations at each scale, rendering scaling plots independent of any particular choice of grids and, crucially, of the orientation of images. We then calculate the derivatives of the scaling plots, so that an image is described by a continuous function, its fractal contour, rather than a single scaling exponent valid over a limited range of scales. We test this method on synthetic examples, ordered and random, then on images of algorithmically defined fractals, and finally, examine selected abstract paintings and prints by acknowledged masters of modern art.
more »
« less
- Award ID(s):
- 2116422
- PAR ID:
- 10543309
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Chaos: An Interdisciplinary Journal of Nonlinear Science
- Volume:
- 34
- Issue:
- 6
- ISSN:
- 1054-1500
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The deterministic motions of clouds and turbulence, despite their chaotic nature, have nonetheless been shown to follow simple statistical power-law scalings: a fractal dimension D relates individual cloud perimeters p to a measurement resolution, and turbulent fluctuations scale with the air parcel separation distance through the Hurst exponent, ℋ. However, it remains uncertain whether atmospheric turbulence is best characterized by a split isotropy that is three-dimensional (3D) with H=1/3 at small scales and two-dimensional (2D) with ℋ=1 at large scales or by a wide-range anisotropic scaling with an intermediate value of ℋ. Here, we introduce an “ensemble fractal dimension” De – analogous to D – that relates the total cloud perimeter per domain area 𝒫 as seen from space to the measurement resolution, and we show theoretically how turbulent dimensionality and cloud edge geometry can be linked through H=De-1. Observationally and numerically, we find the scaling De∼5/3 or H∼2/3, spanning 5 orders of magnitude of scale. Remarkably, the same scaling relationship links two “limiting case” estimates of 𝒫 evaluated at resolutions corresponding to the planetary scale and the Kolmogorov microscale, which span 10 orders of magnitude. Our results are nearly consistent with a previously proposed “23/9D” anisotropic turbulent scaling and suggest that the geometric characteristics of clouds and turbulence in the atmosphere can be easily tied to well-known planetary physical parameters.more » « less
-
Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image generation, recovery, and restoration. This success is often attributed to large amounts of training data. However, recent experimental findings challenge this view and instead suggest that a major contributing factor to this success is that convolutional networks impose strong prior assumptions about natural images. A surprising experiment that highlights this architectural bias towards natural images is that one can remove noise and corruptions from a natural image without using any training data, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to the single corrupted image. While this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few iterations of gradient descent one obtains the uncorrupted image. This intriguing phenomena enables state-of-the-art CNN-based denoising and regularization of linear inverse problems such as compressive sensing. In this paper we take a step towards demystifying this experimental phenomena by attributing this effect to particular architectural choices of convolutional networks, namely convolutions with fixed interpolating filters. We then formally characterize the dynamics of fitting a two layer convolutional generator to a noisy signal and prove that earlystopped gradient descent denoises/regularizes. This results relies on showing that convolutional generators fit the structured part of an image significantly faster than the corrupted portionmore » « less
-
Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image generation, recovery, and restoration. A major contributing factor to this success is that convolutional networks impose strong prior assumptions about natural images. A surprising experiment that highlights this architectural bias towards natural images is that one can remove noise and corruptions from a natural image without using any training data, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to the corrupted image. While this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few iterations of gradient descent it generates an almost uncorrupted image. This intriguing phenomenon enables state-of-the-art CNN-based denoising and regularization of other inverse problems. In this paper, we attribute this effect to a particular architectural choice of convolutional networks, namely convolutions with fixed interpolating filters. We then formally characterize the dynamics of fitting a two-layer convolutional generator to a noisy signal and prove that early-stopped gradient descent denoises/regularizes. Our proof relies on showing that convolutional generators fit the structured part of an image significantly faster than the corrupted portion.more » « less
-
Scaling regions—intervals on a graph where the dependent variable depends linearly on the independent variable—abound in dynamical systems, notably in calculations of invariants like the correlation dimension or a Lyapunov exponent. In these applications, scaling regions are generally selected by hand, a process that is subjective and often challenging due to noise, algorithmic effects, and confirmation bias. In this paper, we propose an automated technique for extracting and characterizing such regions. Starting with a two-dimensional plot—e.g., the values of the correlation integral, calculated using the Grassberger–Procaccia algorithm over a range of scales—we create an ensemble of intervals by considering all possible combinations of end points, generating a distribution of slopes from least squares fits weighted by the length of the fitting line and the inverse square of the fit error. The mode of this distribution gives an estimate of the slope of the scaling region (if it exists). The end points of the intervals that correspond to the mode provide an estimate for the extent of that region. When there is no scaling region, the distributions will be wide and the resulting error estimates for the slope will be large. We demonstrate this method for computations of dimension and Lyapunov exponent for several dynamical systems and show that it can be useful in selecting values for the parameters in time-delay reconstructions.more » « less
An official website of the United States government

