skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Critical nematic correlations throughout the superconducting doping range in Bi2−zPbzSr2−yLayCuO6+x
Abstract Charge modulations have been widely observed in cuprates, suggesting their centrality for understanding the high- T c superconductivity in these materials. However, the dimensionality of these modulations remains controversial, including whether their wavevector is unidirectional or bidirectional, and also whether they extend seamlessly from the surface of the material into the bulk. Material disorder presents severe challenges to understanding the charge modulations through bulk scattering techniques. We use a local technique, scanning tunneling microscopy, to image the static charge modulations on Bi 2− z Pb z Sr 2− y La y CuO 6+ x . The ratio of the phase correlation length ξ CDW to the orientation correlation length ξ orient points to unidirectional charge modulations. By computing new critical exponents at free surfaces including that of the pair connectivity correlation function, we show that these locally 1D charge modulations are actually a bulk effect resulting from classical 3D criticality of the random field Ising model throughout the entire superconducting doping range.  more » « less
Award ID(s):
2006192
PAR ID:
10430449
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract All materials respond heterogeneously at small scales, which limits what a sensor can learn. Although previous studies have characterized measurement noise arising from thermal fluctuations, the limits imposed by structural heterogeneity have remained unclear. In this paper, we find that the least fractional uncertainty with which a sensor can determine a material constant λ 0 of an elastic medium is approximately $$\delta {\lambda }_{0}/{\lambda }_{0} \sim ({\Delta }_{\lambda }^{1/2}/{\lambda }_{0}){(d/a)}^{D/2}{(\xi /a)}^{D/2}$$ δ λ 0 / λ 0 ~ ( Δ λ 1 / 2 / λ 0 ) ( d / a ) D / 2 ( ξ / a ) D / 2 for a  ≫  d  ≫  ξ , $${\lambda }_{0}\gg {\Delta }_{\lambda }^{1/2}$$ λ 0 ≫ Δ λ 1 / 2 , and D  > 1, where a is the size of the sensor, d is its spatial resolution, ξ is the correlation length of fluctuations in λ 0 , Δ λ is the local variability of λ 0 , and D is the dimension of the medium. Our results reveal how one can construct devices capable of sensing near these limits, e.g. for medical diagnostics. We use our theoretical framework to estimate the limits of mechanosensing in a biopolymer network, a sensory process involved in cellular behavior, medical diagnostics, and material fabrication. 
    more » « less
  2. We present a formulation for investigating quench dynamics acrossquantum phase transitions in the presence of decoherence. We formulatedecoherent dynamics induced by continuous quantum non-demolitionmeasurements of the instantaneous Hamiltonian. We generalize thewell-studied universal Kibble-Zurek behavior for linear temporal driveacross the critical point. We identify a strong decoherence regimewherein the decoherence time is shorter than the standard correlationtime, which varies as the inverse gap above the groundstate. In thisregime, we find that the freeze-out time \bar{t}\sim\tau^{{2\nu z}/({1+2\nu z})} t - ∼ τ 2 ν z / ( 1 + 2 ν z ) for when the system falls out of equilibrium and the associatedfreeze-out length \bar{\xi}\sim\tau^{\nu/({1+2\nu z})} ξ ‾ ∼ τ ν / ( 1 + 2 ν z ) show power-law scaling with respect to the quench rate 1/\tau 1 / τ ,where the exponents depend on the correlation length exponent \nu ν and the dynamical exponent z z associated with the transition. The universal exponents differ fromthose of standard Kibble-Zurek scaling. We explicitly demonstrate thisscaling behavior in the instance of a topological transition in a Cherninsulator system. We show that the freeze-out time scale can be probedfrom the relaxation of the Hall conductivity. Furthermore, onintroducing disorder to break translational invariance, we demonstratehow quenching results in regions of imbalanced excitation densitycharacterized by an emergent length scale which also shows universalscaling. We perform numerical simulations to confirm our analyticalpredictions and corroborate the scaling arguments that we postulate asuniversal to a host of systems. 
    more » « less
  3. Surface diffusion has been measured in the glass of an organic semiconductor, MTDATA, using the method of surface grating decay. The decay rate was measured as a function of temperature and grating wavelength, and the results indicate that the decay mechanism is viscous flow at high temperatures and surface diffusion at low temperatures. Surface diffusion in MTDATA is enhanced by 4 orders of magnitude relative to bulk diffusion when compared at the glass transition temperature T g . The result on MTDATA has been analyzed along with the results on other molecular glasses without extensive hydrogen bonds. In total, these systems cover a wide range of molecular geometries from rod-like to quasi-spherical to discotic and their surface diffusion coefficients vary by 9 orders of magnitude. We find that the variation is well explained by the existence of a steep surface mobility gradient and the anchoring of surface molecules at different depths. Quantitative analysis of these results supports a recently proposed double-exponential form for the mobility gradient: log  D( T, z) = log  D v ( T) + [log  D 0 − log  D v ( T)]exp(− z/ξ), where D( T, z) is the depth-dependent diffusion coefficient, D v ( T) is the bulk diffusion coefficient, D 0 ≈ 10 −8  m 2 /s, and ξ ≈ 1.5 nm. Assuming representative bulk diffusion coefficients for these fragile glass formers, the model reproduces the presently known surface diffusion rates within 0.6 decade. Our result provides a general way to predict the surface diffusion rates in molecular glasses. 
    more » « less
  4. Abstract Charge, spin and Cooper-pair density waves have now been widely detected in exotic superconductors. Understanding how these density waves emerge — and become suppressed by external parameters — is a key research direction in condensed matter physics. Here we study the temperature and magnetic-field evolution of charge density waves in the rare spin-triplet superconductor candidate UTe2using scanning tunneling microscopy/spectroscopy. We reveal that charge modulations composed of three different wave vectors gradually weaken in a spatially inhomogeneous manner, while persisting to surprisingly high temperatures of 10–12 K. We also reveal an unexpected decoupling of the three-component charge density wave state. Our observations match closely to the temperature scale potentially related to short-range magnetic correlations, providing a possible connection between density waves observed by surface probes and intrinsic bulk features. Importantly, charge density wave modulations become suppressed with magnetic field both below and above superconductingTcin a comparable manner. Our work points towards an intimate connection between hidden magnetic correlations and the origin of the unusual charge density waves in UTe2
    more » « less
  5. We examine the bulk electronic structure of Nd 3 Ni 2 O 7 using Ni 2 p core-level hard x-ray photoemission spectroscopy combined with density functional theory + dynamical mean-field theory. Our results reveal a large deviation of the Ni 3 d occupation from the formal Ni 2.5 + valency, highlighting the importance of the charge transfer from oxygen ligands. We find that the dominant d 8 configuration is accompanied by nearly equal contributions from d 7 and d 9 states, exhibiting an unusual valence state among Ni-based oxides. Finally, we discuss the Ni d x 2 y 2 and d z 2 orbital-dependent hybridization, correlation and local spin dynamics. Published by the American Physical Society2025 
    more » « less