skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deformation Theory of Log Pseudo-holomorphic Curves and Logarithmic Ruan–Tian Perturbations
In a previous paper (Farajzadeh-Tehrani in Geom Topol 26:989–1075, 2022), for any logarithmic symplectic pair (X, D) of a symplectic manifold X and a simple normal crossings symplectic divisor D, we introduced the notion of log pseudo-holomorphic curve and proved a compactness theorem for the moduli spaces of stable log curves. In this paper, we introduce a natural Fredholm setup for studying the deformation theory of log (and relative) curves. As a result, we obtain a logarithmic analog of the space of Ruan–Tian perturbations for these moduli spaces. For a generic compatible pair of an almost complex structure and a log perturbation term, we prove that the subspace of simple maps in each stratum is cut transversely. Such perturbations enable a geometric construction of Gromov–Witten type invariants for certain semi-positive pairs (X, D) in arbitrary genera. In future works, we will use local perturbations and a gluing theorem to construct log Gromov–Witten invariants of arbitrary such pair (X, D).  more » « less
Award ID(s):
2003340
PAR ID:
10430494
Author(s) / Creator(s):
Date Published:
Journal Name:
Peking Mathematical Journal
ISSN:
2096-6075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A great number of theoretical results are known about log Gromov–Witten invariants (Abramovich and Chen in Asian J Math 18:465–488, 2014; Chen in Ann Math (2) 180:455–521, 2014; Gross and Siebert J Am Math Soc 26: 451–510, 2013), but few calculations are worked out. In this paper we restrict to surfaces and to genus 0 stable log maps of maximal tangency. We ask how various natural components of the moduli space contribute to the log Gromov–Witten invariants. The first such calculation (Gross et al. in Duke Math J 153:297–362, 2010, Proposition 6.1) by Gross–Pandharipande–Siebert deals with multiple covers over rigid curves in the log Calabi–Yau setting. As a natural continuation, in this paper we compute the contributions of non-rigid irreducible curves in the log Calabi–Yau setting and that of the union of two rigid curves in general position. For the former, we construct and study a moduli space of “logarithmic” 1-dimensional sheaves and compare the resulting multiplicity with tropical multiplicity. For the latter, we explicitly describe the components of the moduli space and work out the logarithmic deformation theory in full, which we then compare with the deformation theory of the analogous relative stable maps. 
    more » « less
  2. null (Ed.)
    We prove a decomposition formula of logarithmic Gromov–Witten invariants in a degeneration setting. A one-parameter log smooth family $$X \longrightarrow B$$ with singular fibre over $$b_0\in B$$ yields a family $$\mathscr {M}(X/B,\beta ) \longrightarrow B$$ of moduli stacks of stable logarithmic maps. We give a virtual decomposition of the fibre of this family over $$b_0$$ in terms of rigid tropical maps to the tropicalization of $X/B$ . This generalizes one aspect of known results in the case that the fibre $$X_{b_0}$$ is a normal crossings union of two divisors. We exhibit our formulas in explicit examples. 
    more » « less
  3. Abstract Given a closed symplectic manifoldX, we construct Gromov-Witten-type invariants valued both in (complex)K-theory and in any complex-oriented cohomology theory$$\mathbb{K}$$which isKp(n)-local for some MoravaK-theoryKp(n). We show that these invariants satisfy a version of the Kontsevich-Manin axioms, extending Givental and Lee’s work for the quantumK-theory of complex projective algebraic varieties. In particular, we prove a Gromov-Witten type splitting axiom, and hence define quantumK-theory and quantum$$\mathbb{K}$$-theory as commutative deformations of the corresponding (generalised) cohomology rings ofX; the definition of the quantum product involves the formal group of the underlying cohomology theory. The key geometric input of these results is a construction of global Kuranishi charts for moduli spaces of stable maps of arbitrary genus toX. On the algebraic side, in order to establish a common framework covering both ordinaryK-theory andKp(n)-local theories, we introduce a formalism of ‘counting theories’ for enumerative invariants on a category of global Kuranishi charts. 
    more » « less
  4. We prove a splitting formula that reconstructs the logarithmic Gromov–Witten invariants of simple normal crossing varieties from the punctured Gromov–Witten invariants of their irreducible components, under the assumption of the gluing strata being toric varieties. The formula is based on the punctured Gromov–Witten theory developed by Abramovich, Chen, Gross, and Siebert. 
    more » « less
  5. null (Ed.)
    We compute the $g=1$ , $n=1$ B-model Gromov–Witten invariant of an elliptic curve $$E$$ directly from the derived category $$\mathsf{D}_{\mathsf{coh}}^{b}(E)$$ . More precisely, we carry out the computation of the categorical Gromov–Witten invariant defined by Costello using as target a cyclic $$\mathscr{A}_{\infty }$$ model of $$\mathsf{D}_{\mathsf{coh}}^{b}(E)$$ described by Polishchuk. This is the first non-trivial computation of a positive-genus categorical Gromov–Witten invariant, and the result agrees with the prediction of mirror symmetry: it matches the classical (non-categorical) Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf. 
    more » « less