skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The canonical wall structure and intrinsic mirror symmetry
Abstract As announced in Gross and Siebert (in Algebraic geometry: Salt Lake City 2015, Proceedings of Symposia in Pure Mathematics, vol 97, no 2. AMS, Providence, pp 199–230, 2018) in 2016, we construct and prove consistency of the canonical wall structure . This construction starts with a log Calabi–Yau pair ( X ,  D ) and produces a wall structure, as defined in Gross et al. (Mem. Amer. Math. Soc. 278(1376), 1376, 1–103, 2022). Roughly put, the canonical wall structure is a data structure which encodes an algebro-geometric analogue of counts of Maslov index zero disks. These enumerative invariants are defined in terms of the punctured invariants of Abramovich et al. (Punctured Gromov–Witten invariants, 2020. arXiv:2009.07720v2 [math.AG]). There are then two main theorems of the paper. First, we prove consistency of the canonical wall structure, so that, using the setup of Gross et al. (Mem. Amer. Math. Soc. 278(1376), 1376, 1–103, 2022), the canonical wall structure gives rise to a mirror family. Second, we prove that this mirror family coincides with the intrinsic mirror constructed in Gross and Siebert (Intrinsic mirror symmetry, 2019. arXiv:1909.07649v2 [math.AG]). While the setup of this paper is narrower than that of Gross and Siebert (Intrinsic mirror symmetry, 2019. arXiv:1909.07649v2 [math.AG]), it gives a more detailed description of the mirror.  more » « less
Award ID(s):
1903437
PAR ID:
10405343
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Inventiones mathematicae
Volume:
229
Issue:
3
ISSN:
0020-9910
Page Range / eLocation ID:
1101 to 1202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove a splitting formula that reconstructs the logarithmic Gromov–Witten invariants of simple normal crossing varieties from the punctured Gromov–Witten invariants of their irreducible components, under the assumption of the gluing strata being toric varieties. The formula is based on the punctured Gromov–Witten theory developed by Abramovich, Chen, Gross, and Siebert. 
    more » « less
  2. Abstract Cluster varieties come in pairs: for any 𝒳 {\mathcal{X}}cluster variety there is an associated Fock–Goncharov dual 𝒜 {\mathcal{A}}cluster variety. On the other hand, in the context of mirror symmetry, associated with any log Calabi–Yau variety is its mirror dual, which can be constructed using the enumerative geometry of rational curves in the framework of the Gross–Siebert program. In this paper we bridge the theory of cluster varieties with the algebro-geometric framework of Gross–Siebert mirror symmetry. Particularly, we show that the mirror to the 𝒳 {\mathcal{X}}cluster variety is a degeneration of the Fock–Goncharov dual 𝒜 {\mathcal{A}}cluster varietyand vice versa. To do this, we investigate how the cluster scattering diagram of Gross, Hacking, Keel and Kontsevich compares with the canonical scattering diagram defined by Gross and Siebert to construct mirror duals in arbitrary dimensions. Consequently, we derive an enumerative interpretation of the cluster scattering diagram. Along the way, we prove the Frobenius structure conjecture for a class of log Calabi–Yau varieties obtained as blow-ups of toric varieties. 
    more » « less
  3. Abstract A great number of theoretical results are known about log Gromov–Witten invariants (Abramovich and Chen in Asian J Math 18:465–488, 2014; Chen in Ann Math (2) 180:455–521, 2014; Gross and Siebert J Am Math Soc 26: 451–510, 2013), but few calculations are worked out. In this paper we restrict to surfaces and to genus 0 stable log maps of maximal tangency. We ask how various natural components of the moduli space contribute to the log Gromov–Witten invariants. The first such calculation (Gross et al. in Duke Math J 153:297–362, 2010, Proposition 6.1) by Gross–Pandharipande–Siebert deals with multiple covers over rigid curves in the log Calabi–Yau setting. As a natural continuation, in this paper we compute the contributions of non-rigid irreducible curves in the log Calabi–Yau setting and that of the union of two rigid curves in general position. For the former, we construct and study a moduli space of “logarithmic” 1-dimensional sheaves and compare the resulting multiplicity with tropical multiplicity. For the latter, we explicitly describe the components of the moduli space and work out the logarithmic deformation theory in full, which we then compare with the deformation theory of the analogous relative stable maps. 
    more » « less
  4. Abstract In this note, we explain how mirror symmetry for basic local models in the Gross–Siebert program can be understood through the nontoric blowup construction described by Gross–Hacking–Keel. This is part of a program to understand the symplectic geometry of affine cluster varieties through their SYZ fibrations. 
    more » « less
  5. We prove a correspondence between Donaldson–Thomas invariants of quivers with potential having trivial attractor invariants and genus zero punctured Gromov–Witten invariants of holomorphic symplectic cluster varieties. The proof relies on the comparison of the stability scattering diagram, describing the wall-crossing behavior of Donaldson–Thomas invariants, with a scattering diagram capturing punctured Gromov–Witten invariants via tropical geometry. 
    more » « less