skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Formulation, optimization, and sensitivity of NitrOMZv1.0, a biogeochemical model of the nitrogen cycle in oceanic oxygen minimum zones
Abstract. Nitrogen (N) plays a central role in marine biogeochemistry by limiting biological productivity in the surface ocean; influencing the cycles of other nutrients, carbon, and oxygen; and controlling oceanic emissions of nitrous oxide (N2O) to the atmosphere. Multiple chemical forms of N are linked together in a dynamic N cycle that is especially active in oxygen minimum zones (OMZs), where high organic matter remineralization and low oxygen concentrations fuel aerobic and anaerobic N transformations. Biogeochemical models used to understand the oceanic N cycle and project its change often employ simple parameterizations of the network of N transformations and omit key intermediary tracers such as nitrite (NO2-) and N2O. Here we present a new model of the oceanic N cycle (Nitrogen cycling in Oxygen Minimum Zones, or NitrOMZ) that resolves N transformation occurring within OMZs and their sensitivity to environmental drivers. The model is designed to be easily coupled to current ocean biogeochemical models by representing the major forms of N as prognostic tracers and parameterizing their transformations as a function of seawater chemistry and organic matter remineralization, with minimal interference in other elemental cycles. We describe the model rationale, formulation, and numerical implementation in a one-dimensional representation of the water column that reproduces typical OMZ conditions. We further detail the optimization of uncertain model parameters against observations from the eastern tropical South Pacific OMZ and evaluate the model's ability to reproduce observed profiles of N tracers and transformation rates in this region. We conclude by describing the model's sensitivity to parameter choices and environmental factors and discussing the model's suitability for ocean biogeochemical studies.  more » « less
Award ID(s):
1847687
PAR ID:
10430497
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
16
Issue:
12
ISSN:
1991-9603
Page Range / eLocation ID:
3581 to 3609
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Oxygen minimum zones (OMZs) are unique marine regions where broad redox gradients stimulate biogeochemical cycles. Despite the important and unique role of OMZ microbes in these cycles, they are less characterized than microbes from the oxic ocean. Here we recovered 39 high- and medium-quality metagenome-assembled genomes (MAGs) from the Eastern Tropical South Pacific OMZ. More than half of these MAGs were not represented at the species level among 2631 MAGs from global marine datasets. OMZ MAGs were dominated by denitrifiers catalyzing nitrogen loss and especially MAGs with partial denitrification metabolism. A novel bacterial genome with nitrate-reducing potential could only be assigned to the phylum level. A Marine-Group II archaeon was found to be a versatile denitrifier, with the potential capability to respire multiple nitrogen compounds including N 2 O. The newly discovered denitrifying MAGs will improve our understanding of microbial adaptation strategies and the evolution of denitrification in the tree of life. 
    more » « less
  2. Abstract Oceanic emissions of nitrous oxide (N2O) account for roughly one‐third of all natural sources to the atmosphere. Hot‐spots of N2O outgassing occur over oxygen minimum zones (OMZs), where the presence of steep oxygen gradients surrounding anoxic waters leads to enhanced N2O production from both nitrification and denitrification. However, the relative contributions from these pathways to N2O production and outgassing in these regions remains poorly constrained, in part due to shared intermediary nitrogen tracers, and the tight coupling of denitrification sources and sinks. To shed light on this problem, we embed a new, mechanistic model of the OMZ nitrogen cycle within a three‐dimensional eddy‐resolving physical‐biogeochemical model of the Eastern Tropical South Pacific (ETSP), tracking contributions from remote advection, atmospheric exchange, and local nitrification and denitrification. The model indicates that net N2O production from denitrification is approximately one order of magnitude greater than nitrification within the ETSP OMZ. However, only ∼32% of denitrification‐derived N2O production ultimately outgasses to the atmosphere in this region (contributing ∼36% of the air‐sea N2O flux on an annual basis), while the remaining is exported out of the domain. Instead, remotely produced N2O advected into the OMZ region accounts for roughly half (∼57%) of the total N2O outgassing, with smaller contributions from nitrification (∼7%). Our results suggests that, together with enhanced production by denitrification, upwelling of remotely derived N2O contributes the most to N2O outgassing over the ETSP OMZ. 
    more » « less
  3. Abstract Nitrite is a central molecule in the nitrogen cycle because nitrite oxidation to nitrate (an aerobic process) retains fixed nitrogen in a system and its reduction to dinitrogen gas (anaerobic) reduces the fixed nitrogen inventory. Despite its acknowledged requirement for oxygen, nitrite oxidation is observed in oxygen-depleted layers of the ocean’s oxygen minimum zones (OMZs), challenging the current understanding of OMZ nitrogen cycling. Previous attempts to determine whether nitrite-oxidizing bacteria in the anoxic layer differ from known nitrite oxidizers in the open ocean were limited by cultivation difficulties and sequencing depth. Here, we construct 31 draft genomes of nitrite-oxidizing bacteria from global OMZs. The distribution of nitrite oxidation rates, abundance and expression of nitrite oxidoreductase genes, and relative abundance of nitrite-oxidizing bacterial draft genomes from the same samples all show peaks in the core of the oxygen-depleted zone (ODZ) and are all highly correlated in depth profiles within the major ocean oxygen minimum zones. The ODZ nitrite oxidizers are not found in the Tara Oceans global dataset (the most complete oxic ocean dataset), and the major nitrite oxidizers found in the oxygenated ocean do not occur in ODZ waters. A pangenomic analysis shows the ODZ nitrite oxidizers have distinct gene clusters compared to oxic nitrite oxidizers and are microaerophilic. These findings all indicate the existence of nitrite oxidizers whose niche is oxygen-deficient seawater. Thus, specialist nitrite-oxidizing bacteria are responsible for fixed nitrogen retention in marine oxygen minimum zones, with implications for control of the ocean’s fixed nitrogen inventory. 
    more » « less
  4. Oxygen minimum zones (OMZs), large midwater regions of very low oxygen, are expected to expand as a result of climate change. While oxygen is known to be important in structuring midwater ecosystems, a precise and mechanistic understanding of the effects of oxygen on zooplankton is lacking. Zooplankton are important components of midwater food webs and biogeochemical cycles. Here, we show that, in the eastern tropical North Pacific OMZ, previously undescribed submesoscale oxygen variability has a direct effect on the distribution of many major zooplankton groups. Despite extraordinary hypoxia tolerance, many zooplankton live near their physiological limits and respond to slight (≤1%) changes in oxygen. Ocean oxygen loss (deoxygenation) may, thus, elicit major unanticipated changes to midwater ecosystem structure and function. 
    more » « less
  5. Oxygen minimum zones (OMZs), large midwater regions of very low oxygen, are expected to expand as a result of climate change. While oxygen is known to be important in structuring midwater ecosystems, a precise and mechanistic understanding of the effects of oxygen on zooplankton is lacking. Zooplankton are important components of midwater food webs and biogeochemical cycles. Here, we show that, in the eastern tropical North Pacific OMZ, previously undescribed submesoscale oxygen variability has a direct effect on the distribution of many major zooplankton groups. Despite extraordinary hypoxia tolerance, many zooplankton live near their physiological limits and respond to slight (≤1%) changes in oxygen. Ocean oxygen loss (deoxygenation) may, thus, elicit major unanticipated changes to midwater ecosystem structure and function. 
    more » « less