skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nature and Origin of Magnetic Lineations Within Valdivia Bank: Ocean Plateau Formation by Complex Seafloor Spreading
Abstract Valdivia Bank (VB) is a Late Cretaceous oceanic plateau formed by volcanism from the Tristan‐Gough hotspot at the Mid‐Atlantic Ridge (MAR). To better understand its origin and evolution, magnetic data were used to generate a magnetic anomaly grid, which was inverted to determine crustal magnetization. The magnetization model reveals quasi‐linear polarity zones crossing the plateau and following expected MAR paleo‐locations, implying formation by seafloor spreading over ∼4 Myr during the formation of anomalies C34n‐C33r. Paleomagnetism and biostratigraphy data from International Ocean Discovery Program Expedition 391 confirm the magnetic interpretation. Anomaly C33r is split into two negative bands, likely by a westward ridge jump. One of these negative anomalies coincides with deep rift valleys, indicating their age and mechanism of formation. These findings imply that VB originated by seafloor spreading‐type volcanism during a plate reorganization, not from a vertical stack of lava flows as expected for a large volcano.  more » « less
Award ID(s):
1832197 2232971
PAR ID:
10430596
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rio Grande Rise (RGR) and Walvis Ridge (WR) are South Atlantic large igneous provinces (LIPs), formed on the South American and African plates, respectively, mainly by volcanism from a hot spot erupting at the Mid‐Atlantic Ridge (MAR) during the Late Cretaceous. Both display morphologic complexities that imply their tectonic evolution is incompletely understood. We studied bathymetry, gravity, and vertical gravity gradient maps derived from satellite altimetry to trace faults providing indications of seafloor spreading directions and changes. We also examined magnetic anomalies for time constraint and reflection seismic data for structural information. Abyssal hill fabric and magnetic anomaly data indicate that the area between RGR and WR was anomalous between anomalies C34 (83.6 Ma) and C30 (66.4 Ma) owing to reorganization of a right‐lateral transform on the MAR. This event began ∼92 Ma as the transform shifted south to form multiple, short‐offset right‐lateral transforms, with the reorganization extending through anomaly C34 and ending before anomaly C30. Anomalous spacing of magnetic anomalies and discordant fault fabric indicate that a microplate formed with a core of Cretaceous Quiet Zone seafloor. As the MAR jumped eastward, this microplate was captured by the South American plate and now resides mostly in a basin between the main RGR plateau and a related ridge to the east (East Rio Grande Rise). The microplate is ringed by igneous massifs, implying a link with volcanism. The results presented here indicate that these two LIPs had a complex Late Cretaceous history that belies simple hot spot models. 
    more » « less
  2. Abstract Valdivia Bank (VB) is an oceanic plateau in the South Atlantic that formed from hotspot‐ridge volcanism during the Late Cretaceous at the Mid‐Atlantic Ridge (MAR). It is part of Walvis Ridge (WR), a quasi‐linear seamount chain extending from offshore Namibia to Tristan da Cunha and Gough Islands. To understand Valdivia Bank evolution, we interpret the seismic stratigraphy from multichannel seismic data paired with coring results from International Ocean Discovery Program (IODP) Expedition 391, which recovered mostly pelagic nannofossil ooze and chalks. The seismic section can be divided into three seismic units (SU), a lower transparent interval which is faulted and conforms to basement, a middle, moderate to high amplitude interval which is thick in local depocenters such as rifts, and an upper, subparallel transparent interval. Notable features include regional unconformities, dipping clinoforms, mass transport and contourite deposits, and volcanic structures. Additionally, three infilled rifts are observed across the plateau. Our analysis implies that following a period of sedimentation in the Campanian, the edifice was faulted through the Paleocene, coinciding with a South Atlantic tectonic reorganization. Local depocenters formed as a result of rifting. Subsequently, the plateau experienced thermal rejuvenation and regional uplift during the Eocene. Volcanic mounds were emplaced atop Cretaceous sediments and intrusives were emplaced within the sediments. During the Cenozoic, sedimentation was punctuated, likely in response to changes in the carbonate compensation depth and bottom current intensification. VB sedimentation was complex and largely influenced by the paleoceanographic context of the plateau, as well as thermal rejuvenation and tectonism. 
    more » « less
  3. Abstract Linear magnetic anomalies (LMA), resulting from Earth's magnetic field reversals recorded by seafloor spreading serve as crucial evidence for oceanic crust formation and plate tectonics. Traditionally, LMA analysis relies on visual inspection and manual interpretation, which can be subject to biases due to the complexities of the tectonic history, uneven data coverage, and strong local anomalies associated with seamounts and fracture zones. In this study, we present a Machine learning (ML)‐based framework to identify LMA, determine their orientations and distinguish spatial patterns across oceans. The framework consists of three stages and is semi‐automated, scalable and unbiased. First, a generation network produces artificial yet realistic magnetic anomalies based on user‐specified conditions of linearity and orientation, addressing the scarcity of the labeled training dataset for supervised ML approaches. Second, a characterization network is trained on these generated magnetic anomalies to identify LMA and their orientations. Third, the detected LMA features are clustered into groups based on predicted orientations, revealing underlying spatial patterns, which are directly related to propagating ridges and tectonic activity. The application of this framework to magnetic data from seven areas in the Atlantic and Pacific oceans aligns well with established magnetic lineations and geological features, such as the Mid‐Atlantic Ridge, Reykjanes Ridge, Galapagos Spreading Center, Shatsky Rise, Juan de Fuca Ridge and even Easter Microplate and Galapagos hotspot. The proposed framework establishes a solid foundation for future data‐driven marine magnetic analyses and facilitates objective and quantitative geological interpretation, thus offering the potential to enhance our understanding of oceanic crust formation. 
    more » « less
  4. The strategy for International Ocean Discovery Program (IODP) Expedition 391 was to drill at three distributed locations on Walvis Ridge and one in Guyot Province, providing an age transect along the Tristan-Gough-Walvis (TGW) hotspot track. Site U1576 (proposed Site VB-14A), located on the western flank of Valdivia Bank (Figure F1), is one of two sites on this edifice selected to investigate the type of volcanism, possible plume-ridge interaction, the older extent of hotspot track geochemical zonation, and the age progression. Both hotspot models and the age progression of Homrighausen et al. (2019) predict an age of ~80–85 Ma (Figures F2, F3). A magnetic anomaly map indicates that Site U1576 is located on a prominent negative anomaly (Figure F4) that is thought to be Chron 33r (79.9–83.6 Ma; Ogg, 2020). 
    more » « less
  5. Abstract Magnetic anomaly variations near mid‐ocean ridge spreading centers are sensitive to a variety of crustal accretionary processes as well as geomagnetic field variations when the crust forms. We collected near‐bottom vector magnetic anomaly data during a series of 21 autonomous underwater vehicleSentrydives near 9°50′N on the East Pacific Rise (EPR) covering ∼26 km along‐axis. These data document the 2–3 km wide axial anomaly high that is commonly observed at fast‐spreading ridges but also reveal the presence of a superimposed ∼800 m full wavelength anomaly low. The anomaly low is continuous for ≥13 km along axis and may extend over the entire survey region. A more detailed survey of hydrothermal vents near 9°50.3′N reveals ∼100 m diameter magnetic lows, which are misaligned relative to active vents and therefore cannot explain the continuous axial low. The axial magnetization low persists in magnetic inversions with variable extrusive source thickness, indicating that to the extent to which layer 2A constitutes the sole magnetic source, variations in its thickness alone cannot account for the axial low. Lava accumulation models illustrate that high geomagnetic intensity over the past ∼2.5 kyr, and decreasing intensity over the past ∼900 years, are both consistent with the broad axial anomaly high and the superimposed shorter wavelength low. The continuity of this axial low, and similar features elsewhere on the EPR suggests, that either crustal accretionary processes responsible for this anomaly are common among fast‐spread ridges, or that the observed magnetization low may partially reflect global geomagnetic intensity fluctuations. 
    more » « less