skip to main content


Title: Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles
Abstract Supported nanoparticles are broadly employed in industrial catalytic processes, where the active sites can be tuned by metal-support interactions (MSIs). Although it is well accepted that supports can modify the chemistry of metal nanoparticles, systematic utilization of MSIs for achieving desired catalytic performance is still challenging. The developments of supports with appropriate chemical properties and identification of the resulting active sites are the main barriers. Here, we develop two-dimensional transition metal carbides (MXenes) supported platinum as efficient catalysts for light alkane dehydrogenations. Ordered Pt 3 Ti and surface Pt 3 Nb intermetallic compound nanoparticles are formed via reactive metal-support interactions on Pt/Ti 3 C 2 T x and Pt/Nb 2 CT x catalysts, respectively. MXene supports modulate the nature of the active sites, making them highly selective toward C–H activation. Such exploitation of the MSIs makes MXenes promising platforms with versatile chemical reactivity and tunability for facile design of supported intermetallic nanoparticles over a wide range of compositions and structures.  more » « less
Award ID(s):
1647722
NSF-PAR ID:
10430627
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
9
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this study, we show how strong metal–support interaction (SMSI) oxides in Pt–Nb/SiO 2 and Pt–Ti/SiO 2 affect the electronic, geometric and catalytic properties for propane dehydrogenation. Transmission electron microscopy (TEM), CO chemisorption, and decrease in the catalytic rates per gram Pt confirm that the Pt nanoparticles were partially covered by the SMSI oxides. X-ray absorption near edge structure (XANES), in situ X-ray photoelectron spectroscopy (XPS), and resonant inelastic X-ray scattering (RIXS) showed little change in the energy of Pt valence orbitals upon interaction with SMSI oxides. The catalytic activity per mol of Pt for ethylene hydrogenation and propane dehydrogenation was lower due to fewer exposed Pt sites, while turnover rates were similar. The SMSI oxides, however, significantly increase the propylene selectivity for the latter reaction compared to Pt/SiO 2 . In the SMSI catalysts, the higher olefin selectivity is suggested to be due to the smaller exposed Pt ensemble sites, which result in suppression of the alkane hydrogenolysis reaction; while the exposed atoms remain active for dehydrogenation. 
    more » « less
  2. null (Ed.)
    One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V ( vs.  RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate with atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt 3 M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm −2 . The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions. 
    more » « less
  3. Abstract

    The Zn‐air battery (ZAB) is attracting increasing attention due to its high safety and preeminent performance. However, the practical application of ZAB relies heavily on developing durable support materials to replace conventional carbon supports which have unrecoverable corrosion issues, severely jeopardizing ZAB performance. Herein, a novel porous FeCo glassy alloy is developed as a bifunctional catalytic support for ZAB. The conducting skeleton of the porous glassy alloy is used to stabilize oxygen reduction cocatalysts, and more importantly, the FeCo serves as the primary phase for oxygen evolution. To demonstrate the concept of catalytic glassy alloy support, ultrasmall Pd nanoparticles are anchored, as oxygen reduction active sites, on the porous FeCo (noted as Pd/FeCo) for ZAB. The Pd/FeCo exhibits a significantly improved electrocatalytic activity for oxygen reduction (a half‐wave potential of 0.85 V) and oxygen evolution (a potential of 1.55 V to reach 10 mA cm−2) in the alkaline media. When used in the ZAB, the Pd/FeCo delivers an output power density of 117 mW cm−2and outstanding cycling stability for over 200 h (400 cycles), surpassing the conventional carbon‐supported Pt/C+IrO2catalysts. Such an integrated design that combines highly active components with a porous architecture provides a new strategy to develop novel nanostructured electrocatalysts.

     
    more » « less
  4. Abstract

    Bifunctional oxygen catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with high activities and low‐cost are of prime importance and challenging in the development of fuel cells and rechargeable metal–air batteries. This study reports a porous carbon nanomaterial loaded with cobalt nanoparticles (Co@NC‐x/y) derived from pyrolysis of a Co/Zn bimetallic zeolitic imidazolite framework, which exhibits incredibly high activity as bifunctional oxygen catalysts. For instance, the optimal catalyst of Co@NC‐3/1 has the interconnected framework structure between porous carbon and embedded carbon nanotubes, which shows the superb ORR activity with onset potential of ≈1.15 V and half‐wave potential of ≈0.93 V. Moreover, it presents high OER activity that can be further enhanced to over commercial RuO2by P‐doped with overpotentials of 1.57 V versus reversible hydrogen electrode at 10 mA cm−2and long‐term stability for 2000 circles and a Tafel slope of 85 mV dec−1. Significantly, the nanomaterial demonstrates better catalytic performance and durability than Pt/C for ORR and commercial RuO2and IrO2for OER. These findings suggest the importance of a synergistic effect of graphitic carbon, nanotubes, exposed Co–Nxactive sites, and interconnected framework structure of various carbons for bifunctional oxygen electrocatalysts.

     
    more » « less
  5. Abstract

    Herein, we report on the synthesis of ultrasmall Pd nanoclusters (∼2 nm) protected by L‐cysteine [HOCOCH(NH2)CH2SH] ligands (Pdn(L‐Cys)m) and supported on the surfaces of CeO2, TiO2, Fe3O4, and ZnO nanoparticles for CO catalytic oxidation. The Pdn(L‐Cys)mnanoclusters supported on the reducible metal oxides CeO2, TiO2and Fe3O4exhibit a remarkable catalytic activity towards CO oxidation, significantly higher than the reported Pd nanoparticle catalysts. The high catalytic activity of the ligand‐protected clusters Pdn(L‐Cys)mis observed on the three reducible oxides where 100 % CO conversion occurs at 93–110 °C. The high activity is attributed to the ligand‐protected Pd nanoclusters where the L‐cysteine ligands aid in achieving monodispersity of the Pd clusters by limiting the cluster size to the active sub‐2‐nm region and decreasing the tendency of the clusters for agglomeration. In the case of the ceria support, a complete removal of the L‐cysteine ligands results in connected agglomerated Pd clusters which are less reactive than the ligand‐protected clusters. However, for the TiO2and Fe3O4supports, complete removal of the ligands from the Pdn(L‐Cys)mclusters leads to a slight decrease in activity where the T100%CO conversion occurs at 99 °C and 107 °C, respectively. The high porosity of the TiO2and Fe3O4supports appears to aid in efficient encapsulation of the bare Pdnnanoclusters within the mesoporous pores of the support.

     
    more » « less