skip to main content


Title: Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles
Abstract Supported nanoparticles are broadly employed in industrial catalytic processes, where the active sites can be tuned by metal-support interactions (MSIs). Although it is well accepted that supports can modify the chemistry of metal nanoparticles, systematic utilization of MSIs for achieving desired catalytic performance is still challenging. The developments of supports with appropriate chemical properties and identification of the resulting active sites are the main barriers. Here, we develop two-dimensional transition metal carbides (MXenes) supported platinum as efficient catalysts for light alkane dehydrogenations. Ordered Pt 3 Ti and surface Pt 3 Nb intermetallic compound nanoparticles are formed via reactive metal-support interactions on Pt/Ti 3 C 2 T x and Pt/Nb 2 CT x catalysts, respectively. MXene supports modulate the nature of the active sites, making them highly selective toward C–H activation. Such exploitation of the MSIs makes MXenes promising platforms with versatile chemical reactivity and tunability for facile design of supported intermetallic nanoparticles over a wide range of compositions and structures.  more » « less
Award ID(s):
1647722
NSF-PAR ID:
10430627
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
9
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this study, we show how strong metal–support interaction (SMSI) oxides in Pt–Nb/SiO 2 and Pt–Ti/SiO 2 affect the electronic, geometric and catalytic properties for propane dehydrogenation. Transmission electron microscopy (TEM), CO chemisorption, and decrease in the catalytic rates per gram Pt confirm that the Pt nanoparticles were partially covered by the SMSI oxides. X-ray absorption near edge structure (XANES), in situ X-ray photoelectron spectroscopy (XPS), and resonant inelastic X-ray scattering (RIXS) showed little change in the energy of Pt valence orbitals upon interaction with SMSI oxides. The catalytic activity per mol of Pt for ethylene hydrogenation and propane dehydrogenation was lower due to fewer exposed Pt sites, while turnover rates were similar. The SMSI oxides, however, significantly increase the propylene selectivity for the latter reaction compared to Pt/SiO 2 . In the SMSI catalysts, the higher olefin selectivity is suggested to be due to the smaller exposed Pt ensemble sites, which result in suppression of the alkane hydrogenolysis reaction; while the exposed atoms remain active for dehydrogenation. 
    more » « less
  2. null (Ed.)
    One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V ( vs.  RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate with atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt 3 M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm −2 . The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions. 
    more » « less
  3. Abstract

    Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.

     
    more » « less
  4. Supported metal nanoparticle catalysts have become increasingly crucial for many catalytic applications. However, long‐term catalyst stability remains a problem due to catalyst deactivation caused by coke formation and sintering. The deposition of a thin overcoating via atomic layer deposition (ALD) onto metal‐supported nanoparticles has shown to greatly inhibit catalyst deactivation. This work utilizes a model catalyst system comprised of Pt nanoparticles supported on Al2O3to demonstrate the effect of an atomically thin overcoating on supported metal nanoparticles. Continuous operando small‐angle X‐ray scattering (SAXS) and X‐ray absorption near edge spectroscopy (XANES) monitor structural and electronic changes to the catalyst and overcoating during calcination. SAXS data fitting reveals the formation of nanopores in the overcoating at high temperatures, while XANES monitors the oxidation state of the Pt catalyst. Herein, the usefulness of combined X‐ray techniques is demonstrated to characterize supported metal catalysts to further understanding of the synergistic effects of the ALD overcoating to aid in the design of new catalyst materials.

     
    more » « less
  5. The molecular and electronic structures and chemical properties of the active sites on the surface of supported Na 2 WO 4 /SiO 2 catalysts used for oxidative coupling of methane (OCM) are poorly understood. Model SiO 2 -supported, Na-promoted tungsten oxide catalysts (Na–WO x /SiO 2 ) were systematically prepared using various Na- and W-precursors using carefully controlled Na/W molar ratios and examined with in situ Raman, UV-vis DR, CO 2 -TPD-DRIFT and NH 3 -TPD-DRIFT spectroscopies. The traditionally-prepared catalysts corresponding to 5% Na 2 WO 4 nominal loading, with Na/W molar ratio of 2, were synthesized from the aqueous Na 2 WO 4 ·2H 2 O precursor. After calcination at 800 °C, the initially amorphous SiO 2 support crystallized to the cristobalite phase and the supported sodium tungstate phase consisted of both crystalline Na 2 WO 4 nanoparticles (Na/W = 2) and dispersed phase Na–WO 4 surface sites (Na/W < 2). On the other hand, the catalysts prepared via a modified impregnation method using individual precursors of NaOH + AMT, such that the Na/W molar ratio remained well below 2, resulted in: (i) SiO 2 remaining amorphous (ii) only dispersed phase Na–WO 4 surface sites. The dispersed Na–WO 4 surface sites were isolated, more geometrically distorted, less basic in nature, and more reducible than the crystalline Na 2 WO 4 nanoparticles. The CH 4 + O 2 -TPSR results reveal that the isolated, dispersed phase Na–WO 4 surface sites were significantly more C 2 selective, but slightly less active than the traditionally-prepared catalysts that contain crystalline Na 2 WO 4 nanoparticles (Na/W = 2). These findings demonstrate that the isolated, dispersed phase Na–WO 4 sites on the SiO 2 support surface are the selective-active sites for the OCM reaction. 
    more » « less