skip to main content

Title: 31 P spin–lattice and singlet order relaxation mechanisms in pyrophosphate studied by isotopic substitution, field shuttling NMR, and molecular dynamics simulation
Nuclear spin relaxation mechanisms are often difficult to isolate and identify, especially in molecules with internal flexibility. Here we combine experimental work with computation in order to determine the major mechanisms responsible for 31 P spin–lattice and singlet order (SO) relaxation in pyrophosphate, a physiologically relevant molecule. Using field-shuttling relaxation measurements (from 2 μT to 9.4 T) and rates calculated from molecular dynamics (MD) trajectories, we identified chemical shift anisotropy (CSA) and spin–rotation as the major mechanisms, with minor contributions from intra- and intermolecular coupling. The significant spin–rotation interaction is a consequence of the relatively rapid rotation of the –PO 3 2− entities around the bridging P–O bonds, and is treated by a combination of MD simulations and quantum chemistry calculations. Spin–lattice relaxation was predicted well without adjustable parameters, and for SO relaxation one parameter was extracted from the comparison between experiment and computation (a correlation coefficient between the rotational motion of the groups).  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Page Range / eLocation ID:
24238 to 24245
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 31 P NMR spectroscopy and the study of nuclear spin singlet relaxation phenomena are of interest in particular due to the importance of phosphorus-containing compounds in physiology. We report the generation and measurement of relaxation of 31 P singlet order in a chemically equivalent but magnetically inequivalent case. Nuclear magnetic resonance singlet state lifetimes of 31 P pairs have heretofore not been reported. Couplings between 1 H and 31 P nuclei lead to magnetic inequivalence and serve as a mechanism of singlet state population conversion within this molecule. We show that in this molecule singlet relaxation occurs at a rate significantly faster than spin–lattice relaxation, and that anticorrelated chemical shift anisotropy can account for this observation. Calculations of this mechanism, with the help of molecular dynamics simulations and ab initio calculations, provide excellent agreement with the experimental findings. This study could provide guidance for the study of 31 P singlets within other compounds, including biomolecules. 
    more » « less
  2. Using transition metal ions for spin-based applications, such as electron paramagnetic resonance imaging (EPRI) or quantum computation, requires a clear understanding of how local chemistry influences spin properties. Herein we report a series of four ionic complexes to provide the first systematic study of one aspect of local chemistry on the V( iv ) spin – the counterion. To do so, the four complexes (Et 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 1 ), ( n -Bu 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 2 ), ( n -Hex 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 3 ), and ( n -Oct 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 4 ) were probed by EPR spectroscopy in solid state and solution. Room temperature, solution X-band ( ca. 9.8 GHz) continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy revealed an increasing linewidth with larger cations, likely a counterion-controlled tumbling in solution via ion pairing. In the solid state, variable-temperature (5–180 K) X-band ( ca. 9.4 GHz) pulsed EPR studies of 1–4 in o -terphenyl glass demonstrated no effect on spin–lattice relaxation times ( T 1 ), indicating little role for the counterion on this parameter. However, the phase memory time ( T m ) of 1 below 100 K is markedly smaller than those of 2–4 . This result is counterintuitive, as 2–4 are relatively richer in 1 H nuclear spin, hence, expected to have shorter T m . Thus, these data suggest an important role for counterion methyl groups on T m , and moreover provide the first instance of a lengthening T m with increasing nuclear spin quantity on a molecule. 
    more » « less
  3. We present a 23Na nuclear spin dynamics model for interpreting nuclear magnetic resonance (NMR) spin-lattice relaxation and central linewidth data in the invert glass system Na4P2S7-xOx, 0 ≤ x ≤ 7. The glassy nature of this material results in variations in local Na+ cation environments that may be described by a Gaussian distribution of activation energies. A consistent difference between the mean activation energies determined by NMR and DC conductivity measurements was observed, and interpreted using a percolation theory model. From this, the Nasingle bondNa coordination number in the sodium cation sublattice was obtained. These values were consistent with jumps through tetrahedral faces of the sodium cages for the sulfur rich glasses, x < 5, consistent with proposed models of their short range order (SRO) structures. From NMR spin-echo measurements, we determined the Nasingle bondNa second moment M2 resulting from the Nasingle bondNa magnetic dipole interaction of nearest neighbors. Values of M2 obtained as a function of sodium number density N were in agreement with models for uniform sodium distribution, indicating that these invert glass systems form so as to maximize the average Nasingle bondNa distance. A simple Coulombic attraction model between Na+ cation and X (=S−, O−) anion was applied to calculate the activation energy. In the range 1.5 ≤ x ≤ 7, an increase in activation energy with increasing oxygen content x occurred, and was consistent with the decrease in average anionic radius, and the increase in Coulombic attraction. For small oxygen additions, 0 ≤ x ≤ 1.5, the suggested minimum at low oxygen concentration seen in the activation energies obtained from DC conductivity data is not evident in the model. 
    more » « less
  4. Abstract

    Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE‐SHEATH) is investigated to achieve rapid hyperpolarization of13C1spins of [1‐13C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co‐ligation of DMSO and H2O. Order‐unity13C (>50 %) polarization of catalyst‐bound [1‐13C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1‐13C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build‐up in situ. The highest measured polarization of a 30‐mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3OD. Efficient13C polarization is also enabled by favorable relaxation dynamics in sub‐microtesla magnetic fields, as indicated by fast polarization buildup rates compared to theT1spin‐relaxation rates (e. g., ∼0.2 s−1versus ∼0.1 s−1, respectively, for a 6 mM catalyst‐[1‐13C]pyruvate sample). Finally, the catalyst‐bound hyperpolarized [1‐13C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1‐13C]pyruvate produced via comparatively fast and simple SABRE‐SHEATH‐based approaches.

    more » « less
  5. Abstract

    In this article, we investigate the creep mechanism of clay at the nanoscale. We conduct the molecular dynamics (MD) modeling of clay samples consisting of hexagonal particles under compression and shear. The MD simulations include oedometer creep, shear creep, direct shear tests, and stress relaxation. The numerical results show that the nanoscale creep mechanism of clay is related to particle rotation, translation, and stacking under different loading conditions. The clay sample under creep shows two types of particle arrangements, that is, the shifted face‐to‐face configuration and the face‐to‐edge configuration. The orientation angle of clay particles is computed to track the rotation of individual particles due to creep. The fabric variation of the clay under creep is characterized by the dihedral angle between the basal particle plane and the x‐y plane and the order parameter. It is found that the factors affecting the microstructure variation of the clay aggregate include stress levels, loading rates, and particle sizes. In the nanoscale shear creep test, the creep process comprises three stages, that is, primary, secondary, and tertiary. The microstructure change during creep depends on the initial alignment of clay particles. The clay creep under a more significant stress level results in a more considerable order parameter and a more orientated clay structure.

    more » « less