skip to main content


Title: NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural Network Synthesis
The success of DL can be attributed to hours of parameter and architecture tuning by human experts. Neural Architecture Search (NAS) techniques aim to solve this problem by automating the search procedure for DNN architectures making it possible for non-experts to work with DNNs. Specifically, One-shot NAS techniques have recently gained popularity as they are known to reduce the search time for NAS techniques. One-Shot NAS works by training a large template network through parameter sharing which includes all the candidate NNs. This is followed by applying a procedure to rank its components through evaluating the possible candidate architectures chosen randomly. However, as these search models become increasingly powerful and diverse, they become harder to understand. Consequently, even though the search results work well, it is hard to identify search biases and control the search progression, hence a need for explainability and human-in-the-loop (HIL) One-Shot NAS. To alleviate these problems, we present NAS-Navigator, a visual analytics (VA) system aiming to solve three problems with One-Shot NAS; explainability, HIL design, and performance improvements compared to existing state-of-the-art (SOTA) techniques. NAS-Navigator gives full control of NAS back in the hands of the users while still keeping the perks of automated search, thus assisting non-expert users. Analysts can use their domain knowledge aided by cues from the interface to guide the search. Evaluation results confirm the performance of our improved One-Shot NAS algorithm is comparable to other SOTA techniques. While adding Visual Analytics (VA) using NAS-Navigator shows further improvements in search time and performance. We designed our interface in collaboration with several deep learning researchers and evaluated NAS-Navigator through a control experiment and expert interviews.  more » « less
Award ID(s):
1900706
NSF-PAR ID:
10430778
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Visualization and Computer Graphics
ISSN:
1077-2626
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neural Architecture Search (NAS) is widely used to automatically obtain the neural network with the best performance among a large number of candidate architectures. To reduce the search time, zero-shot NAS aims at designing training-free proxies that can predict the test performance of a given architecture. However, as shown recently, none of the zero-shot proxies proposed to date can actually work consistently better than a naive proxy, namely, the number of network parameters (#Params). To improve this state of affairs, as the main theoretical contribution, we first reveal how some specific gradient properties across different samples impact the convergence rate and generalization capacity of neural networks. Based on this theoretical analysis, we propose a new zero-shot proxy, ZiCo, the first proxy that works consistently better than #Params. We demonstrate that ZiCo works better than State-Of-The-Art (SOTA) proxies on several popular NAS-Benchmarks (NASBench101, NATSBench-SSS/TSS, TransNASBench-101) for multiple applications (e.g., image classification/reconstruction and pixel-level prediction). Finally, we demonstrate that the optimal architectures found via ZiCo are as competitive as the ones found by one-shot and multi-shot NAS methods, but with much less search time. For example, ZiCo-based NAS can find optimal architectures with 78.1%, 79.4%, and 80.4% test accuracy under inference budgets of 450M, 600M, and 1000M FLOPs, respectively, on ImageNet within 0.4 GPU days. 
    more » « less
  2. Search spaces hallmark the advancement of Neural Architecture Search (NAS). Large and complex search spaces with versatile building operators and structures provide more opportunities to brew promising architectures, yet pose severe challenges on efficient exploration and exploitation. Subsequently, several search space shrinkage methods optimize by selecting a single sub-region that contains some well-performing networks. Small performance and efficiency gains are observed with these methods but such techniques leave room for significantly improved search performance and are ineffective at retaining architectural diversity. We propose LISSNAS, an automated algorithm that shrinks a large space into a diverse, small search space with SOTA search performance. Our approach leverages locality, the relationship between structural and performance similarity, to efficiently extract many pockets of well-performing networks. We showcase our method on an array of search spaces spanning various sizes and datasets. We accentuate the effectiveness of our shrunk spaces when used in one-shot search by achieving the best Top-1 accuracy in two different search spaces. Our method achieves a SOTA Top-1 accuracy of 77.6% in ImageNet under mobile constraints, best-in-class Kendal-Tau, architectural diversity, and search space size.

     
    more » « less
  3. Parallel coordinate plots (PCPs) have been widely used for high-dimensional (HD) data storytelling because they allow for presenting a large number of dimensions without distortions. The axes ordering in PCP presents a particular story from the data based on the user perception of PCP polylines. Existing works focus on directly optimizing for PCP axes ordering based on some common analysis tasks like clustering, neighborhood, and correlation. However, direct optimization for PCP axes based on these common properties is restrictive because it does not account for multiple properties occurring between the axes, and for local properties that occur in small regions in the data. Also, many of these techniques do not support the human-in-the-loop (HIL) paradigm, which is crucial (i) for explainability and (ii) in cases where no single reordering scheme fits the users’ goals. To alleviate these problems, we present PC-Expo, a real-time visual analytics framework for all-in-one PCP line pattern detection and axes reordering. We studied the connection of line patterns in PCPs with different data analysis tasks and datasets. PC-Expo expands prior work on PCP axes reordering by developing real-time, local detection schemes for the 12 most common analysis tasks (properties). Users can choose the story they want to present with PCPs by optimizing directly over their choice of properties. These properties can be ranked, or combined using individual weights, creating a custom optimization scheme for axes reordering. Users can control the granularity at which they want to work with their detection scheme in the data, allowing exploration of local regions. PC-Expo also supports HIL axes reordering via local-property visualization, which shows the regions of granular activity for every axis pair. Local-property visualization is helpful for PCP axes reordering based on multiple properties, when no single reordering scheme fits the user goals. A comprehensive evaluation was done with real users and diverse datasets confirm the efficacy of PC-Expo in data storytelling with PCPs. 
    more » « less
  4. Resource is an important constraint when deploying Deep Neural Networks (DNNs) on mobile and edge devices. Existing works commonly adopt the cell-based search approach, which limits the flexibility of network patterns in learned cell structures. Moreover, due to the topology-agnostic nature of existing works, including both cell-based and node-based approaches, the search process is time consuming and the performance of found architecture may be sub-optimal. To address these problems, we propose AutoShrink, a topologyaware Neural Architecture Search (NAS) for searching efficient building blocks of neural architectures. Our method is node-based and thus can learn flexible network patterns in cell structures within a topological search space. Directed Acyclic Graphs (DAGs) are used to abstract DNN architectures and progressively optimize the cell structure through edge shrinking. As the search space intrinsically reduces as the edges are progressively shrunk, AutoShrink explores more flexible search space with even less search time. We evaluate AutoShrink on image classification and language tasks by crafting ShrinkCNN and ShrinkRNN models. ShrinkCNN is able to achieve up to 48% parameter reduction and save 34% Multiply-Accumulates (MACs) on ImageNet-1K with comparable accuracy of state-of-the-art (SOTA) models. Specifically, both ShrinkCNN and ShrinkRNN are crafted within 1.5 GPU hours, which is 7.2× and 6.7× faster than the crafting time of SOTA CNN and RNN models, respectively. 
    more » « less
  5. Resource is an important constraint when deploying Deep Neural Networks (DNNs) on mobile and edge devices. Existing works commonly adopt the cell-based search approach, which limits the flexibility of network patterns in learned cell structures. Moreover, due to the topology-agnostic nature of existing works, including both cell-based and node-based approaches, the search process is time consuming and the performance of found architecture may be sub-optimal. To address these problems, we propose AutoShrink, a topology-aware Neural Architecture Search (NAS) for searching efficient building blocks of neural architectures. Our method is node-based and thus can learn flexible network patterns in cell structures within a topological search space. Directed Acyclic Graphs (DAGs) are used to abstract DNN architectures and progressively optimize the cell structure through edge shrinking. As the search space intrinsically reduces as the edges are progressively shrunk, AutoShrink explores more flexible search space with even less search time. We evaluate AutoShrink on image classification and language tasks by crafting ShrinkCNN and ShrinkRNN models. ShrinkCNN is able to achieve up to 48% parameter reduction and save 34% Multiply-Accumulates (MACs) on ImageNet-1K with comparable accuracy of state-of-the-art (SOTA) models. Specifically, both ShrinkCNN and ShrinkRNN are crafted within 1.5 GPU hours, which is 7.2× and 6.7× faster than the crafting time of SOTA CNN and RNN models, respectively. 
    more » « less