Abstract For any compact connected one-dimensional submanifold $$K\subset \mathbb R^{2\times 2}$$ without boundary that has no rank-one connection and is elliptic, we prove the quantitative rigidity estimate $$\begin{align*} \inf_{M\in K}\int_{B_{1/2}}| Du -M |^2\, \textrm{d}x \leq C \int_{B_1} \operatorname{dist}^2(Du, K)\, \textrm{d}x, \qquad\forall u\in H^1(B_1;\mathbb R^2). \end{align*}$$This is an optimal generalization, for compact connected submanifolds of $$\mathbb R^{2\times 2}$$ without boundary, of the celebrated quantitative rigidity estimate of Friesecke, James, and Müller for the approximate differential inclusion into $SO(n)$. The proof relies on the special properties of elliptic subsets $$K\subset{{\mathbb{R}}}^{2\times 2}$$ with respect to conformal–anticonformal decomposition, which provide a quasilinear elliptic partial differential equation satisfied by solutions of the exact differential inclusion $$Du\in K$$. We also give an example showing that no analogous result can hold true in $$\mathbb R^{n\times n}$$ for $$n\geq 3$$. 
                        more » 
                        « less   
                    
                            
                            Uniqueness of some cylindrical tangent cones to special Lagrangians
                        
                    
    
            Abstract We show that if an exact special Lagrangian $$N\subset {\mathbb {C}}^n$$ N ⊂ C n has a multiplicity one, cylindrical tangent cone of the form $${\mathbb {R}}^{k}\times {\textbf{C}}$$ R k × C where $${\textbf{C}}$$ C is a special Lagrangian cone with smooth, connected link, then this tangent cone is unique provided $${\textbf{C}}$$ C satisfies an integrability condition. This applies, for example, when $${\textbf{C}}= {\textbf{C}}_{HL}^{m}$$ C = C HL m is the Harvey-Lawson $$T^{m-1}$$ T m - 1 cone for $$m\ne 8,9$$ m ≠ 8 , 9 . 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1944952
- PAR ID:
- 10430786
- Date Published:
- Journal Name:
- Geometric and Functional Analysis
- Volume:
- 33
- Issue:
- 2
- ISSN:
- 1016-443X
- Page Range / eLocation ID:
- 376 to 420
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Classically, an indecomposable class $$R$$ in the cone of effective curves on a K3 surface $$X$$ is representable by a smooth rational curve if and only if $$R^{2}=-2$$ . We prove a higher-dimensional generalization conjectured by Hassett and Tschinkel: for a holomorphic symplectic variety $$M$$ deformation equivalent to a Hilbert scheme of $$n$$ points on a K3 surface, an extremal curve class $$R\in H_{2}(M,\mathbb{Z})$$ in the Mori cone is the line in a Lagrangian $$n$$ -plane $$\mathbb{P}^{n}\subset M$$ if and only if certain intersection-theoretic criteria are met. In particular, any such class satisfies $$(R,R)=-\frac{n+3}{2}$$ , and the primitive such classes are all contained in a single monodromy orbit.more » « less
- 
            Abstract We analyze an algorithmic question about immersion theory: for which $$m$$, $$n$$, and $$CAT=\textbf{Diff}$$ or $$\textbf{PL}$$ is the question of whether an $$m$$-dimensional $CAT$-manifold is immersible in $$\mathbb{R}^{n}$$ decidable? We show that PL immersibility is decidable in all cases except for codimension 2, whereas smooth immersibility is decidable in all odd codimensions and undecidable in many even codimensions. As a corollary, we show that the smooth embeddability of an $$m$$-manifold with boundary in $$\mathbb{R}^{n}$$ is undecidable when $n-m$ is even and $$11m \geq 10n+1$$.more » « less
- 
            null (Ed.)Abstract Let $$u_{k}$$ u k be a solution of the Helmholtz equation with the wave number k , $$\varDelta u_{k}+k^{2} u_{k}=0$$ Δ u k + k 2 u k = 0 , on (a small ball in) either $${\mathbb {R}}^{n}$$ R n , $${\mathbb {S}}^{n}$$ S n , or $${\mathbb {H}}^{n}$$ H n . For a fixed point p , we define $$M_{u_{k}}(r)=\max _{d(x,p)\le r}|u_{k}(x)|.$$ M u k ( r ) = max d ( x , p ) ≤ r | u k ( x ) | . The following three ball inequality $$M_{u_{k}}(2r)\le C(k,r,\alpha )M_{u_{k}}(r)^{\alpha }M_{u_{k}}(4r)^{1-\alpha }$$ M u k ( 2 r ) ≤ C ( k , r , α ) M u k ( r ) α M u k ( 4 r ) 1 - α is well known, it holds for some $$\alpha \in (0,1)$$ α ∈ ( 0 , 1 ) and $$C(k,r,\alpha )>0$$ C ( k , r , α ) > 0 independent of $$u_{k}$$ u k . We show that the constant $$C(k,r,\alpha )$$ C ( k , r , α ) grows exponentially in k (when r is fixed and small). We also compare our result with the increased stability for solutions of the Cauchy problem for the Helmholtz equation on Riemannian manifolds.more » « less
- 
            Abstract We study the extent to which divisors of a typical integer n are concentrated. In particular, defining $$\Delta (n) := \max _t \# \{d | n, \log d \in [t,t+1]\}$$ Δ ( n ) : = max t # { d | n , log d ∈ [ t , t + 1 ] } , we show that $$\Delta (n) \geqslant (\log \log n)^{0.35332277\ldots }$$ Δ ( n ) ⩾ ( log log n ) 0.35332277 … for almost all n , a bound we believe to be sharp. This disproves a conjecture of Maier and Tenenbaum. We also prove analogs for the concentration of divisors of a random permutation and of a random polynomial over a finite field. Most of the paper is devoted to a study of the following much more combinatorial problem of independent interest. Pick a random set $${\textbf{A}} \subset {\mathbb {N}}$$ A ⊂ N by selecting i to lie in $${\textbf{A}}$$ A with probability 1/ i . What is the supremum of all exponents $$\beta _k$$ β k such that, almost surely as $$D \rightarrow \infty $$ D → ∞ , some integer is the sum of elements of $${\textbf{A}} \cap [D^{\beta _k}, D]$$ A ∩ [ D β k , D ] in k different ways? We characterise $$\beta _k$$ β k as the solution to a certain optimisation problem over measures on the discrete cube $$\{0,1\}^k$$ { 0 , 1 } k , and obtain lower bounds for $$\beta _k$$ β k which we believe to be asymptotically sharp.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    