Abstract Grain boundaries in mantle minerals are of critical importance to geophysical and geochemical processes of the Earth’s interior. One of the fundamental issues is to understand how the water (H2O) component influences the properties of grain boundaries in silicate materials. Here, we report the results of the structure and stability of several tilt grain boundaries in Mg2SiO4 forsterite over the pressure range 0 to 15 GPa using density functional theory-based first-principles simulations. The results suggest greater energetic stability and hydration-driven volume collapse (negative excess volume) at zero pressure for the majority of hydrous grain boundaries relative to the anhydrous (dry) ones. All the hydrous grain boundaries become increasingly favorable at elevated pressures as the calculated hydration enthalpy systematically decreases with increasing pressure. The hydrous components at the interfacial regions are predominantly in the hydroxyl form and, to a lesser extent, in the molecular H2O form. Their calculated ratio ranges from 1.6 to 8.7 among the different grain boundary configurations. Our structural analysis also reveals that the hydroxyls are bound to either both Mg and Si or to Mg only. In comparison, the molecular species are bound only to Mg sites. Besides direct oxygen-hydrogen bonding, intermolecular hydrogen bonding becomes important with compression. On the basis of our results, we suggest that local atomic rearrangements caused by dissociative adsorption of water facilitate efficient compaction of the boundary interfaces, which, in turn, results in greater relative stability of hydrous grain boundaries. This means that water prefers to be incorporated within the grain boundaries over the bulk of silicate materials.
more »
« less
Grain Growth and the Effect of Different Time Scales
Many technologically useful materials are polycrystals composed of a myriad of small monocrystalline grains separated by grain boundaries. Dynamics of grain boundaries play a crucial role in determining the grain structure and defining the materials properties across multiple scales. In this work, we consider two models for the motion of grain boundaries with the dynamic lattice misorientations and the triple junctions drag, and we conduct extensive numerical study of the models, as well as present relevant experimental results of grain growth in thin films.
more »
« less
- Award ID(s):
- 1905463
- PAR ID:
- 10430860
- Editor(s):
- Español, M; Lewicka, M; Scardia, L; Schlömerkemper, A
- Date Published:
- Journal Name:
- Association for Women in Mathematics series
- Volume:
- 31
- ISSN:
- 2364-5741
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many technologically useful materials are polycrystals composed of small monocrystalline grains that are separated by grain boundaries of crystallites with different lattice orientations. The energetics and connectivities of the grain boundaries play an essential role in defining the effective properties of materials across multiple scales. In this paper we derive a Fokker–Planck model for the evolution of the planar grain boundary network. The proposed model considers anisotropic grain boundary energy which depends on lattice misorientation and takes into account mobility of the triple junctions, as well as independent dynamics of the misorientations. We establish long time asymptotics of the Fokker–Planck solution, namely the joint probability density function of misorientations and triple junctions, and closely related the marginal probability density of misorientations. Moreover, for an equilibrium configuration of a boundary network, we derive explicit local algebraic relations, a generalized Herring Condition formula, as well as formula that connects grain boundary energy density with the geometry of the grain boundaries that share a triple junction. Although the stochastic model neglects the explicit interactions and correlations among triple junctions, the considered specific form of the noise, under the fluctuation–dissipation assumption, provides partial information about evolution of a grain boundary network, and is consistent with presented results of extensive grain growth simulations.more » « less
-
Abstract Grain boundaries, ubiquitous in real materials, play an important role in the mechanical properties of ceramics. Using boron carbide as a typical superhard but brittle material under hypervelocity impact, we report atomistic reactive molecular dynamics simulations using the ReaxFF reactive force field fitted to quantum mechanics to examine grain‐boundary engineering strategies aimed at improving the mechanical properties. In particular, we examine the dynamical mechanical response of two grain‐boundary models with or without doped Si as a function of finite shear deformation. Our simulations show that doping Si into the grain boundary significantly increases the shear strength and stress threshold for amorphization and failure for both grain‐boundary structures. These results provide validation of our suggestions that Si doping provides a promising approach to mitigate amorphous band formation and failure in superhard boron carbide.more » « less
-
null (Ed.)Abstract Non-topological defects in spatial patterns such as grain boundaries in crystalline materials arise from local variations of the pattern properties such as amplitude, wavelength and orientation. Such non-topological defects may be treated as spatially localized structures, i.e. as fronts connecting distinct periodic states. Using the two-dimensional quadratic-cubic Swift–Hohenberg equation, we obtain fully nonlinear equilibria containing grain boundaries that separate a patch of hexagons with one orientation (the grain) from an identical hexagonal state with a different orientation (the background). These grain boundaries take the form of closed curves with multiple penta-hepta defects that arise from local orientation mismatches between the two competing hexagonal structures. Multiple isolas occurring robustly over a wide range of parameters are obtained even in the absence of a unique Maxwell point, underlining the importance of retaining pinning when analysing patterns with defects, an effect omitted from the commonly used amplitude-phase description. Similar results are obtained for quasiperiodic structures in a two-scale phase-field model.more » « less
-
Polycrystalline ion conductors are widely used as solid electrolytes in energy storage technologies. However, they often exhibit poor ion transport across grain boundaries and pores. This work demonstrates that strategically tuning the mesoscale microstructures, including pore size, pore distribution, and chemical compositions of grain boundaries, can improve ion transport. Using LiTa2PO8as a case study, we have shown that the combination of LiF as a sintering agent with Hf4+implantation improves grain-grain contact, resulting in smaller, evenly distributed pores, reduced chemical contrast, and minimized nonconductive impurities. A suite of techniques has been used to decouple the effects of LiF and Hf4+. Specifically, LiF modifies particle shape and breaks large pores into smaller ones, while Hf4+addresses the chemical mismatches between grains and grain boundaries. Consequently, this approach achieves nearly two orders of magnitude improvement in ion conduction. Tuning mesoscale structures offers a cost-effective method for enhancing ion transport in polycrystalline systems and has notable implications for synthesizing high-performance ionic materials.more » « less
An official website of the United States government

