skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Models of the putative antimony( v )–diolate motifs in antileishmanial pentavalent antimonial drugs
The structures of the pentavalent antimonials, small-molecule Sb-containing drugs used to treat the neglected tropical disease leishmaniasis, remain unknown despite their widespread use for over half a century. These drugs are prepared by combination of an Sb( v ) precursor and a sugar derivative and proposed structures frequently invoke a cyclic stiborane motif in which a vicinal diolate ligand chelates an Sb( v ) center. As a step towards better understanding the structures of the pentavalent antimonial drugs, a series of cyclic organostiboranes spanning the stereochemical space afforded by a vicinal diolate motif has been synthesized and characterized. X-ray crystallography and NMR spectroscopy provide unambiguous characterization of the structures of these model compounds and of the interaction of the diolate with the Sb( v ) center. Particularly notable are the systematic trends observed in the NMR spectroscopic signals as a function of the stereochemistry of the diolate. The spectroscopic signatures identified with these model compounds will provide a framework for elucidating the structures of the pentavalent antimonial drugs.  more » « less
Award ID(s):
2018501
PAR ID:
10430908
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Dalton Transactions
Volume:
52
Issue:
27
ISSN:
1477-9226
Page Range / eLocation ID:
9229 to 9237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Structure elucidation plays a critical role across the landscape of medicinal chemistry, including medicinal inorganic chemistry. Herein, we discuss the importance of structure elucidation in drug development and then provide three vignettes that capture key instances of its relevance in the development of biologically active inorganic compounds. In the first, we describe the exploration of the biological activity of the trinuclear Ru compound called ruthenium red and the realization that this activity derived from a dinuclear impurity. We next explore the development of Au‐based antitubercular and antiarthritic drugs, which features a key step whereby ligands were discovered to bind to Au through S atoms. The third exposition traces the development of As‐based antiparasitic drugs, a key step of which was the realization that the reaction of arsenic acid and aniline does not produce an anilide of arsenic acid, as originally thought, but rather an amino arsonic acid. These case studies provide the motivation for an outlook in which the development of Sb‐based antiparasitic drugs is described. Although antileishmanial pentavalent antimonial drugs remain in widespread use to this day, their chemical structures remain unknown. 
    more » « less
  2. Abstract Adding synthetic nucleotides to DNA increases the linear information density of DNA molecules. Here we report that it also can increase the diversity of their three-dimensional folds. Specifically, an additional nucleotide (dZ, with a 5-nitro-6-aminopyridone nucleobase), placed at twelve sites in a 23-nucleotides-long DNA strand, creates a fairly stable unimolecular structure (that is, the folded Z-motif, or fZ-motif) that melts at 66.5 °C at pH 8.5. Spectroscopic, gel and two-dimensional NMR analyses show that the folded Z-motif is held together by six reverse skinny dZ:dZ base pairs, analogous to the crystal structure of the free heterocycle. Fluorescence tagging shows that the dZ:dZ pairs join parallel strands in a four-stranded compact down–up–down–up fold. These have two possible structures: one with intercalated dZ:dZ base pairs, the second without intercalation. The intercalated structure would resemble the i-motif formed by dC:dC+-reversed pairing at pH ≤ 6.5. This fZ-motif may therefore help DNA form compact structures needed for binding and catalysis. 
    more » « less
  3. Kallopterolides A–I (1–9), a family of nine diterpenoids possessing either a cleaved pseudopterane or a severed cembrane skeleton, along with several known compounds were isolated from the Caribbean Sea plume Antillogorgia kallos. The structures and relative configurations of 1–9 were characterized by analysis of HR-MS, IR, UV, and NMR spectroscopic data in addition to computational methods and side-by-side comparisons with published NMR data of related congeners. An investigation was conducted as to the potential of the kallopterolides as plausible in vitro anti-inflammatory, antiprotozoal, and antituberculosis agents. 
    more » « less
  4. Three new organotin( iv ) carboxylate compounds were synthesized and structurally characterized by elemental analysis and FT-IR and multinuclear NMR ( 1 H, 13 C, 119 Sn) spectroscopy. Single X-ray crystallography reveals that compound C2 has a monoclinic crystal system with space group P 2 1 / c having distorted bipyramidal geometry defined by C 3 SnO 2 . The synthesized compounds were screened for drug-DNA interactions via UV-Vis spectroscopy and cyclic voltammetry showing good activity with high binding constants. Theoretical investigations also support the reactivity of the compounds as depicted from natural bond orbital (NBO) analysis using Gaussian 09. Synthesized compounds were initially evaluated on two cancer (HeLa and MCF-7) cell lines and cytotoxicity to normal cells was evaluated using a non-cancerous (BHK-21) cell line. All the compounds were found to be active, with IC 50 values less than that of the standard drug i.e. cisplatin. The cytotoxic effect of the most potent compound C2 was confirmed by LDH cytotoxicity assay and fluorescence imaging after PI staining. Apoptotic features in compound C2 treated cancer cells were visualized after DAPI staining while regulation of apoptosis was observed by reactive oxygen species generation, binding of C2 with DNA, a change in mitochondrial membrane potential and expression of activated caspase-9 and caspase-3 in cancer cells. Results are indicative of activation of the intrinsic pathway of apoptosis in C2 treated cancer cells. 
    more » « less
  5. Reaction of nickel and zinc triflates with the tridentate leucoverdazyl 1-isopropyl-3,5-di (2′-pyridyl)-6-oxo-2H-tetrazine (dipyvdH) and triethylamine resulted in the neutral coordination compounds M(dipyvd)2(M = Ni,Zn). In acetonitrile, both compounds undergo two one electron oxidation processes, Zn (dipyvd)2 at −0.28 V and −0.12 V and Ni(dipyvd)2 at −0.32 V and −0.15 V vs ferrocene/ferricenium. Oxidations are ligand based resulting in an intermediate mixed valence species and a cationic bis(verdazyl) compound respectively. Oxidation of the ligand changes a localized, antiaromatic, non-planar 8π electron anion to a planar, delocalized 7π electron radical. The change in ligand structure results in an increase in the octahedral ligand field splitting from 10,500 cm–1to ∼13,000 cm–1, suggesting an increase in the pi acceptor character of the ligand. In the mixed valence species, spectroscopic data suggests minimal interaction between ligands mediated by the metal center; i.e., these are class I-II systems in the Robin-Day classification. 
    more » « less