skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implementing Logic Gates by DNA Crystal Engineering
Abstract DNA self‐assembly computation is attractive for its potential to perform massively parallel information processing at the molecular level while at the same time maintaining its natural biocompatibility. It has been extensively studied at the individual molecule level, but not as much as ensembles in 3D. Here, the feasibility of implementing logic gates, the basic computation operations, in large ensembles: macroscopic, engineered 3D DNA crystals is demonstrated. The building blocks are the recently developed DNA double crossover‐like (DXL) motifs. They can associate with each other via sticky‐end cohesion. Common logic gates are realized by encoding the inputs within the sticky ends of the motifs. The outputs are demonstrated through the formation of macroscopic crystals that can be easily observed. This study points to a new direction of construction of complex 3D crystal architectures and DNA‐based biosensors with easy readouts.  more » « less
Award ID(s):
2025187 2107393 2106790
PAR ID:
10430937
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
33
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The rational design of nanoscopic DNA tiles has yielded highly ordered crystalline matter in 2D and 3D. The most well‐studied 3D tile is the DNA tensegrity triangle, which is known to self‐assemble into macroscopic crystals. However, contemporary rational design parameters for 3D DNA crystals nearly universally invoke integer numbers of DNA helical turns and Watson–Crick (WC) base pairs. In this study, 24‐bp edges are substituted into a previously 21‐bp (two helical turns of DNA) tensegrity triangle motif to explore whether such unconventional motif can self‐assemble into 3D crystals. The use of noncanonical base pairs in the sticky ends results in a cubic arrangement of tensegrity triangles with exceedingly high symmetry, assembling a lattice from winding helical axes and diamond‐like tessellation patterns. Reverting this motif to sticky ends with Watson–Crick pairs results in a trigonal hexagonal arrangement, replicating this diamond arrangement in a hexagonal context. These results showcase that the authors can generate unexpected, highly complex, pathways for materials design by testing modifications to 3D tiles without prior knowledge of the ensuing symmetry. This study expands the rational design toolbox for DNA nanotechnology; and it further illustrates the existence of yet‐unexplored arrangements of crystalline soft matter. 
    more » « less
  2. Abstract DNA devices have been shown to be capable of evaluating Boolean logic. Several robust designs for DNA circuits have been demonstrated. Some prior DNA‐based circuits are use‐once circuits since the gate motifs of the DNA circuits get permanently destroyed as a side effect of the computation, and hence cannot respond correctly to subsequent changes in inputs. Other DNA‐based circuits use a large reservoir of buffered gates to replace the working gates of the circuit and can be used to drive a finite number of computation cycles. In many applications of DNA circuits, the inputs are inherently asynchronous, and this necessitates that the DNA circuits be asynchronous: the output must always be correct regardless of differences in the arrival time of inputs. This paper demonstrates: 1) renewable DNA circuits, which can be manually reverted to their original state by addition of DNA strands, and 2) time‐responsive DNA circuits, where if the inputs change over time, the DNA circuit can recompute the output correctly based on the new inputs, that are manually added after the system has been reset. The properties of renewable, asynchronous, and time‐responsiveness appear to be central to molecular‐scale systems; for example, self‐regulation in cellular organisms. 
    more » « less
  3. Abstract Non‐canonical interactions in DNA remain under‐explored in DNA nanotechnology. Recently, many structures with non‐canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non‐canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross‐talking between Watson–Crick and non‐canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long‐range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non‐canonical motifs and their topological self‐assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs. 
    more » « less
  4. Abstract The DNA tensegrity triangle is known to reliably self‐assemble into a 3D rhombohedral crystalline lattice via sticky‐end cohesion. Here, the library of accessible motifs is expanded through covalent extensions of intertriangle regions and sticky‐end‐coordinated linkages of adjacent triangles with double helical segments using both geometrically symmetric and asymmetric configurations. The molecular structures of 18 self‐assembled architectures at resolutions of 3.32–9.32 Å are reported; the observed cell dimensions, cavity sizes, and cross‐sectional areas agree with theoretical expectations. These data demonstrate that fine control over triclinic and rhombohedral crystal parameters and the customizability of more complex 3D DNA lattices are attainable via rational design. It is anticipated that augmented DNA architectures may be fine‐tuned for the self‐assembly of designer nanocages, guest–host complexes, and proscriptive 3D nanomaterials, as originally envisioned. Finally, designer asymmetric crystalline building blocks can be seen as a first step toward controlling and encoding information in three dimensions. 
    more » « less
  5. Abstract DNA is an ideal molecule for the construction of 3D crystals with tunable properties owing to its high programmability based on canonical Watson–Crick base pairing, with crystal assembly in all three dimensions facilitated by immobile Holliday junctions and sticky end cohesion. Despite the promise of these systems, only a handful of unique crystal scaffolds have been reported. Herein, we describe a new crystal system with a repeating sequence that mediates the assembly of a 3D scaffold via a series of Holliday junctions linked together with complementary sticky ends. By using an optimized junction sequence, we could determine a high‐resolution (2.7 Å) structure containing R3 crystal symmetry, with a slight subsequent improvement (2.6 Å) using a modified sticky‐end sequence. The immobile Holliday junction sequence allowed us to produce crystals that provided unprecedented atomic detail. In addition, we expanded the crystal cavities by 50 % by adding an additional helical turn between junctions, and we solved the structure to 4.5 Å resolution by molecular replacement. 
    more » « less