skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Burial and Denudation Alter Microbial Life at the Bottom of the Hypo‐Critical Zone
Abstract How subsurface microbial life changed at the bottom of the kilometers‐deep (hypo) Critical Zone in response to evolving surface conditions over geologic time is an open question. This study investigates the burial and exhumation, biodegradation, and fluid circulation history of hydrocarbon reservoirs across the Colorado Plateau as a window into the hypo‐Critical Zone. Hydrocarbon reservoirs, in the Paradox and Uinta basins, were deeply buried starting ca. 100 to 60 Ma, reaching temperatures >80–140°C, likely sterilizing microbial communities present since the deposition of sediments. High salinities associated with evaporites may have further limited microbial activity. Upward migration of hydrocarbons from shale source rocks into shallower reservoirs during maximum burial set the stage for microbial re‐introduction by creating organic‐rich “hot spots.” Denudation related to the incision of the Colorado River over the past few million years brought reservoirs closer to the surface under cooler temperatures, enhanced deep meteoric water circulation and flushing of saline fluids, and likely re‐inoculated more permeable sediments up to several km depth. Modern‐ to paleo‐hydrocarbon reservoirs show molecular and isotopic evidence of anaerobic oxidation of hydrocarbons coupled to bacterial sulfate reduction in areas with relatively high SO4‐fluxes. Anaerobic oil biodegradation rates are high enough to explain the removal of at least some portion of postulated “supergiant oil fields” across the Colorado Plateau by microbial activity over the past several million years. Results from this study help constrain the lower limits of the hypo‐Critical Zone and how it evolved over geologic time, in response to changing geologic, hydrologic, and biologic forcings.  more » « less
Award ID(s):
2120733
PAR ID:
10430955
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
24
Issue:
6
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In Guaymas Basin, organic-rich hydrothermal sediments produce complex hydrocarbon mixtures including saturated, aromatic and alkylated aromatic compounds. We examined sediments from push cores from Guyamas sites with distinct temperature and geochemistry profiles to gain a better understanding on abiotic and biological hydrocarbon alteration. Here we provide evidence for biodegradation of hopanoids, producing saturated hydrocarbons like drimane and homodrimane as intermediate products. These sesquiterpene by-products are present throughout cooler sediments, but their relative abundance is drastically reduced within hotter hydrothermal sediments, likely due to hydrothermal mobilization. Within the sterane pool we detect a trend toward aromatization of steroidal compounds within hotter sediments. The changes in hopane and sterane biomarker composition at different sites reflect temperature-related differences in geochemical and microbial hydrocarbon alterations. In contrast to traditionally observed microbial biodegradation patterns that may extend over hundreds of meters in subsurface oil reservoirs, Guaymas Basin shows highly compressed changes in surficial sediments. 
    more » « less
  2. null (Ed.)
    Seeps, spills and other oil pollution introduce hydrocarbons into the ocean. Marine cyanobacteria also produce hydrocarbons from fatty acids, but little is known about the size and turnover of this cyanobacterial hydrocarbon cycle. We report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane and that microbial hydrocarbon production exhibits stratification and diel cycling in the sunlit surface ocean. Using chemical and isotopic tracing we find that pentadecane production mainly occurs in the lower euphotic zone. Using a multifaceted approach, we estimate that the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100- to 500-fold. We show that rapid pentadecane consumption sustains a population of pentadecane-degrading bacteria, and possibly archaea. Our findings characterize a microbial hydrocarbon cycle in the open ocean that dwarfs oil input. We hypothesize that cyanobacterial hydrocarbon production selectively primes the ocean’s microbiome with long-chain alkanes whereas degradation of other petroleum hydrocarbons is controlled by factors including proximity to petroleum seepage. 
    more » « less
  3. Sediment and pore water samples from all drill sites of International Ocean Discovery Program (IODP) Expedition 385 were analyzed quantitatively for aliphatic hydrocarbons, petroleum (C9–C44) hydrocarbons, and aromatic and polyaromatic compounds. All hydrocarbon classes showed concentration peaks in deep, hot sediments just above and below deeply buried sills (Sites U1545 and U1546), indicating that they were formed by thermal maturation of buried organic matter in the thermal aureole of sill intrusion and have, to a large extent, remained in situ. Plotting hydrocarbon concentrations against in situ temperature shows a pronounced increase in concentration between 65° and 80°C, the thermal limit of hydrocarbon-degrading microbial populations. A smaller hydrocarbon maximum is associated with surficial sediments: within the upper 4 m of the sediment column, the concentrations of total saturated hydrocarbons and of total petroleum hydrocarbons were almost always higher compared to the next sediment samples in downhole sequence, compatible with biogenic hydrocarbon input that reaches all drill sites in Guaymas Basin. The U-shaped hydrocarbon profiles suggest a biological filter that degrades surficial hydrocarbon input and deeply sourced hydrocarbons as soon as the temperature regime in gradually cooling, slowly accumulating sediments permits microbial activity. 
    more » « less
  4. Summary Magnetic minerals form or alter in the presence of hydrocarbons, making them a potential magnetic proxy for identifying hydrocarbon migration pathways. In this paper we test this idea by magnetically measuring core samples from the Tay Fan in the Western Central Graben in the Central North Sea. In a companion paper, 3D petroleum systems modelling has been carried out to forward model migration pathways within the Tay Fan. Rock magnetic experiments identified a range of magnetite, maghemite, iron sulphides, siderite, goethite and titanohematite, some of which are part of the background signal, and some due to the presence of hydrocarbons. Typical concentrations of the magnetic minerals were ∼10–200 ppm. Importantly, we have identified an increasing presence of authigenic iron sulphides (likely pyrite and greigite) along the identified lateral hydrocarbon migration pathway (east to west). This is likely caused by biodegradation resulting in the precipitation of iron sulphides, however, though less likely, it could alternatively be caused by mature oil generation, which subsequently travelled with the migrating oil to the traps in the west. These observations suggest mineral magnetic techniques could be a rapid alternative method for identifying the severity of biodegradation or oil maturity in core sample, which can then be used to calibrate petroleum systems models. 
    more » « less
  5. ABSTRACT The prevalence of microbial life in permafrost up to several million years (Ma) old has been well documented. However, the long-term survivability, evolution, and metabolic activity of the entombed microbes over this time span remain underexplored. We integrated aspartic acid (Asp) racemization assays with metagenomic sequencing to characterize the microbial activity, phylogenetic diversity, and metabolic functions of indigenous microbial communities across a ∼0.01- to 1.1-Ma chronosequence of continuously frozen permafrost from northeastern Siberia. Although Asp in the older bulk sediments (0.8 to 1.1 Ma) underwent severe racemization relative to that in the youngest sediment (∼0.01 Ma), the much lower d -Asp/ l -Asp ratio (0.05 to 0.14) in the separated cells from all samples suggested that indigenous microbial communities were viable and metabolically active in ancient permafrost up to 1.1 Ma. The microbial community in the youngest sediment was the most diverse and was dominated by the phyla Actinobacteria and Proteobacteria . In contrast, microbial diversity decreased dramatically in the older sediments, and anaerobic, spore-forming bacteria within Firmicutes became overwhelmingly dominant. In addition to the enrichment of sporulation-related genes, functional genes involved in anaerobic metabolic pathways such as fermentation, sulfate reduction, and methanogenesis were more abundant in the older sediments. Taken together, the predominance of spore-forming bacteria and associated anaerobic metabolism in the older sediments suggest that a subset of the original indigenous microbial community entrapped in the permafrost survived burial over geological time. IMPORTANCE Understanding the long-term survivability and associated metabolic traits of microorganisms in ancient permafrost frozen millions of years ago provides a unique window into the burial and preservation processes experienced in general by subsurface microorganisms in sedimentary deposits because of permafrost’s hydrological isolation and exceptional DNA preservation. We employed aspartic acid racemization modeling and metagenomics to determine which microbial communities were metabolically active in the 1.1-Ma permafrost from northeastern Siberia. The simultaneous sequencing of extracellular and intracellular genomic DNA provided insight into the metabolic potential distinguishing extinct from extant microorganisms under frozen conditions over this time interval. This in-depth metagenomic sequencing advances our understanding of the microbial diversity and metabolic functions of extant microbiomes from early Pleistocene permafrost. Therefore, these findings extend our knowledge of the survivability of microbes in permafrost from 33,000 years to 1.1 Ma. 
    more » « less