skip to main content

Title: A Review of Machine Learning for Convective Weather

We present an overview of recent work on using artificial intelligence (AI)/machine learning (ML) techniques for forecasting convective weather and its associated hazards, including tornadoes, hail, wind, and lightning. These high-impact phenomena globally cause both massive property damage and loss of life, yet they are very challenging to forecast. Given the recent explosion in developing ML techniques across the weather spectrum and the fact that the skillful prediction of convective weather has immediate societal benefits, we present a thorough review of the current state of the art in AI and ML techniques for convective hazards. Our review includes both traditional approaches, including support vector machines and decision trees, as well as deep learning approaches. We highlight the challenges in developing ML approaches to forecast these phenomena across a variety of spatial and temporal scales. We end with a discussion of promising areas of future work for ML for convective weather, including a discussion of the need to create trustworthy AI forecasts that can be used for forecasters in real time and the need for active cross-sector collaboration on testbeds to validate ML methods in operational situations.

Significance Statement

We provide an overview of recent machine learning research in predicting hazards from thunderstorms, specifically looking at lightning, wind, hail, and tornadoes. These hazards kill people worldwide and also destroy property and livestock. Improving the prediction of these events in both the local space as well as globally can save lives and property. By providing this review, we aim to spur additional research into developing machine learning approaches for convective hazard prediction.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Artificial Intelligence for the Earth Systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The scientific community has long acknowledged the importance of high-temporal-resolution radar observations to advance science research and improve high-impact weather prediction. Development of innovative rapid-scan radar technologies over the past two decades has enabled radar volume scans of 10–60 s compared to 3–5 min with traditional parabolic dish research radars and the WSR-88D radar network. This review examines the impact of rapid-scan radar technology, defined as radars collecting volume scans in 1 min or less, on atmospheric science research spanning different subdisciplines and evaluates the strengths and weaknesses of the use of rapid-scan radars. In particular, a significant body of literature has accumulated for tornado and severe thunderstorm research and forecasting applications, in addition to a growing number of studies of convection. Convection research has benefited substantially from more synchronous vertical views, but could benefit more substantially by leveraging multi-Doppler wind retrievals and complementary in situ and remote sensors. In addition, several years of forecast evaluation studies are synthesized from radar testbed experiments, and the benefits of assimilating rapid-scan radar observations are analyzed. Although the current body of literature reflects the considerable utility of rapid-scan radars to science research, a weakness is that limited advancements in understanding of the physical mechanisms behind observed features have been enabled. There is considerable opportunity to bridge the gap in physical understanding with the current technology using coordinated efforts to include rapid-scan radars in field campaigns and expanding the breadth of meteorological phenomena studied.

    Significance Statement

    Recently developed rapid-scan radar technologies, capable of collecting volumetric (i.e., three-dimensional) measurements in 10–60 s, have improved temporal sampling of weather phenomena. This review examines the impact of these radar observations from the past two decades on science research and emerging operational capabilities. Substantial breadth and impact of research is evident for tornado research and forecasting applications, in addition to documentation of other rapidly evolving phenomena associated with deep convection, such as tornadoes, hail, lightning, and tropical cyclones. This review identifies the strengths and weaknesses of how these radars have been used in scientific research to inform future studies, emerging from the increasing availability and capability of rapid-scan radars. In addition, this review synthesizes research that can benefit future operational radar decisions.

    more » « less
  2. null (Ed.)
    Abstract As lightning-detection records lengthen and the efficiency of severe weather reporting increases, more accurate climatologies of convective hazards can be constructed. In this study we aggregate flashes from the National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) with severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data on a common grid of 0.25° and 1-h steps. Each year approximately 75–200 thunderstorm hours occur over the southwestern, central, and eastern United States, with a peak over Florida (200–250 h). The activity over the majority of Europe ranges from 15 to 100 h, with peaks over Italy and mountains (Pyrenees, Alps, Carpathians, Dinaric Alps; 100–150 h). The highest convective activity over continental Europe occurs during summer and over the Mediterranean during autumn. The United States peak for tornadoes and large hail reports is in spring, preceding the maximum of lightning and severe wind reports by 1–2 months. Convective hazards occur typically in the late afternoon, with the exception of the Midwest and Great Plains, where mesoscale convective systems shift the peak lightning threat to the night. The severe wind threat is delayed by 1–2 h compared to hail and tornadoes. The fraction of nocturnal lightning over land ranges from 15% to 30% with the lowest values observed over Florida and mountains (~10%). Wintertime lightning shares the highest fraction of severe weather. Compared to Europe, extreme events are considerably more frequent over the United States, with maximum activity over the Great Plains. However, the threat over Europe should not be underestimated, as severe weather outbreaks with damaging winds, very large hail, and significant tornadoes occasionally occur over densely populated areas. 
    more » « less
  3. The initiation of thunderstorms in environments characterized by strong wind shear presents a forecast challenge because of the complexities of the interactions between growing cumulus clouds and wind shear. Thunderstorms that develop in such environments are often capable of producing high-impact hazards, highlighting the importance of convection initiation in sheared environments. Although recent research has greatly improved understanding of the structure and evolution of rising thermals in unsheared environments, there remains uncertainty in how wind shear influences the convection initiation process. Two large-eddy simulations (75-m horizontal grid spacing) were performed to study this problem. Convection initiation attempts are forced in the simulations through prescribed surface heat fluxes (the initial boundary layers are statistically horizontally homogeneous and quasi–steady state but contain turbulent eddies as a result of random initial temperature perturbations). The only difference between the two simulations is the presence or absence of wind shear above 2 km. Important differences in the entrainment patterns are present between sheared and unsheared growing cumulus clouds. As found in previous research, the overturning circulation associated with rising thermals drives dynamic entrainment in the unsheared clouds. However, in sheared clouds, wake entrainment resulting from the tilting of environmental vorticity is an important dynamic entrainment pathway. This result has implications for both the structure of sheared growing cumulus clouds and for convection initiation in sheared environments.

    Significance Statement

    Forecasts of thunderstorm hazards such as tornadoes, hail, and strong winds, require the accurate prediction of when and where thunderstorms form. Unfortunately, predicting thunderstorm formation is not easy, as there are a lot of different factors to consider. One such factor is environmental vertical wind shear, which describes how winds change speed and direction with height. The purpose of this study is to better understand how wind shear impacts developing clouds. Our results demonstrate a specific mechanism, called “wake entrainment,” through which wind shear can weaken developing clouds and potentially prevent them from becoming strong thunderstorms entirely. Understanding this mechanism may be useful for thunderstorm prediction in environments characterized by wind shear. 

    more » « less
  4. Abstract

    This research uses image classification and machine learning methods on radar reflectivity mosaics to segment, classify, and track quasi-linear convective systems (QLCSs) in the United States for a 22-yr period. An algorithm is trained and validated using radar-derived spatial and intensity information from thousands of manually labeled QLCS and non-QLCS event slices. The algorithm is then used to automate the identification and tracking of over 3000 QLCSs with high accuracy, affording the first, systematic, long-term climatology of QLCSs. Convective regions determined by the procedure to be QLCSs are used as foci for spatiotemporal filtering of observed severe thunderstorm reports; this permits an estimation of the number of severe storm hazards due to this morphology. Results reveal that nearly 32% of MCSs are classified as QLCSs. On average, 139 QLCSs occur annually, with most of these events clustered from April through August in the eastern Great Plains and central/lower Mississippi and Ohio River Valleys. QLCSs are responsible for a spatiotemporally variable proportion of severe hazard reports, with a maximum in QLCS-report attribution (30%–42%) in the western Ohio and central Mississippi River Valleys. Over 21% of tornadoes, 28% of severe winds, and 10% of severe hail reports are due to QLCSs across the central and eastern United States. The proportion of QLCS-affiliated tornado and severe wind reports maximize during the overnight and cool season, with more than 50% of tornadoes and wind reports in some locations due to QLCSs. This research illustrates the utility of automated storm-mode classification systems in generating extensive, systematic climatologies of phenomena, reducing the need for time-consuming and spatiotemporal-limiting methods where investigators manually assign morphological classifications.

    more » « less
  5. Abstract Globally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing. 
    more » « less