The purpose of this research is to build an operational model for predicting wildfire occurrence for the contiguous United States (CONUS) in the 1–10-day range using the U-Net 3+ machine learning model. This paper illustrates the range of model performance resulting from choices made in the modeling process, such as how labels are defined for the model and how input variables are codified for the model. By combining the capabilities of the U-Net 3+ model with a neighborhood loss function, fractions skill score (FSS), we can quantify model success by predictions made both in and around the location of the original fire occurrence label. The model is trained on weather, weather-derived fuel, and topography observational inputs and labels representing fire occurrence. Observational weather, weather-derived fuel, and topography data are sourced from the gridded surface meteorological (gridMET) dataset, a daily, CONUS-wide, high-spatial-resolution dataset of surface meteorological variables. Fire occurrence labels are sourced from the U.S. Department of Agriculture’s Fire Program Analysis Fire-Occurrence Database (FPA-FOD), which contains spatial wildfire occurrence data for CONUS, combining data sourced from the reporting systems of federal, state, and local organizations. By exploring the many aspects of the modeling process with the added context of model performance, this work builds understanding around the use of deep learning to predict fire occurrence in CONUS.
Our work seeks to explore the limits to which deep learning can predict wildfire occurrence in CONUS with the ultimate goal of providing decision support to those allocating fire resources during high fire seasons. By exploring with what accuracy and lead time we can provide insights to these persons, we hope to reduce loss of life, reduce damage to property, and improve future event preparedness. We compare two models, one trained on all fires in the continental United States and the other on only large lightning fires. We found that a model trained on all fires produced a higher probability of fire.