skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generating Stateful Policies for IoT Device Security with Cross-Device Sensors
The security of Internet-of-Things (IoT) devices in the residential environment is important due to their widespread presence in homes and their sensing and actuation capabilities. However, securing IoT devices is challenging due to their varied designs, deployment longevity, multiple manufacturers, and potentially limited availability of long-term firmware updates. Attackers have exploited this complexity by specifically targeting IoT devices, with some recent high-profile cases affecting millions of devices. In this work, we explore access control mechanisms that tightly constrain access to devices at the residential router, with the goal of precluding access that is inconsistent with legitimate users' goals. Since many residential IoT devices are controlled via applications on smartphones, we combine application sensors on phones with sensors at residential routers to analyze workflows. We construct stateful filters at residential routers that can require user actions within a registered smartphone to enable network access to an IoT device. In doing so, we constrain network packets only to those that are consistent with the user's actions. In our experiments, we successfully identified 100% of malicious traffic while correctly allowing more than 98% of legitimate network traffic. The approach works across device types and manufacturers with straightforward API and state machine construction for each new device workflow.  more » « less
Award ID(s):
1651540
PAR ID:
10431058
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Network of the Future (NoF)
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the years, honeypots emerged as an important security tool to understand attacker intent and deceive attackers to spend time and resources. Recently, honeypots are being deployed for Internet of things (IoT) devices to lure attackers, and learn their behavior. However, most of the existing IoT honeypots, even the high interaction ones, are easily detected by an attacker who can observe honeypot traffic due to lack of real network traffic originating from the honeypot. This implies that, to build better honeypots and enhance cyber deception capabilities, IoT honeypots need to generate realistic network traffic flows. To achieve this goal, we propose a novel deep learning based approach for generating traffic flows that mimic real network traffic due to user and IoT device interactions.A key technical challenge that our approach overcomes is scarcity of device-specific IoT traffic data to effectively train a generator.We address this challenge by leveraging a core generative adversarial learning algorithm for sequences along with domain specific knowledge common to IoT devices.Through an extensive experimental evaluation with 18 IoT devices, we demonstrate that the proposed synthetic IoT traffic generation tool significantly outperforms state of the art sequence and packet generators in remaining indistinguishable from real traffic even to an adaptive attacker. 
    more » « less
  2. The recent spate of cyber attacks towards Internet of Things (IoT) devices in smart homes calls for effective techniques to understand, characterize, and unveil IoT device activities. In this paper, we present a new system, named IoTAthena, to unveil IoT device activities from raw network traffic consisting of timestamped IP packets. IoTAthena characterizes each IoT device activity using an activity signature consisting of an ordered sequence of IP packets with inter-packet time intervals. IoTAthena has two novel polynomial time algorithms, sigMatch and actExtract. For any given signature, sigMatch can capture all matches of the signature in the raw network traffic. Using sigMatch as a subfunction, actExtract can accurately unveil the sequence of various IoT device activities from the raw network traffic. Using the network traffic of heterogeneous IoT devices collected at the router of a real-world smart home testbed and a public IoT dataset, we demonstrate that IoTAthena is able to characterize and generate activity signatures of IoT device activities and accurately unveil the sequence of IoT device activities from raw network traffic. 
    more » « less
  3. Internet-of-Things (IoT) devices are vulnerable to malware and require new mitigation techniques due to their limited resources. To that end, previous research has used periodic Remote Attestation (RA) or Traffic Analysis (T A) to detect malware in IoT devices. However, RA is expensive, and TA only raises suspicion without confirming malware presence. To solve this, we design MADEA, the first system that blends RA and T A to offer a comprehensive approach to malware detection for the IoT ecosystem. T A builds profiles of expected packet traces during benign operations of each device and then uses them to detect malware from network traffic in realtime. RA confirms the presence or absence of malware on the device. MADEA achieves 100% true positive rate. It also outperforms other approaches with 160× faster detection time. Finally, without MADEA, effective periodic RA can consume at least ∼14× the amount of energy that a device needs in one hour. 
    more » « less
  4. Despite the significant benefits of the widespread adoption of smart home Internet of Things (IoT) devices, these devices are known to be vulnerable to active and passive attacks. Existing literature has demonstrated the ability to infer the activities of these devices by analyzing their network traffic. In this study, we introduce a packet-based signature generation and detection system that can identify specific events associated with IoT devices by extracting simple features from raw encrypted network traffic. Unlike existing techniques that depend on specific time windows, our approach automatically determines the optimal number of packets to generate unique signatures, making it more resilient to network jitters. We evaluate the effectiveness, uniqueness, and correctness of our signatures by training and testing our system using four public datasets and an emulated dataset with varying network delays, verifying known signatures and discovering new ones. Our system achieved an average recall and precision of 98-99% and 98-100%, respectively, demonstrating the effectiveness and feasibility of using packet-level signatures to detect IoT device activities. 
    more » « less
  5. Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the wide deployments of Internet-of-things (IoT) in smart homes. As IoT devices often directly interact with the users and environments, this paper studies if and how we could explore the collective insights from multiple heterogeneous IoT devices to infer user activities for home safety monitoring and assisted living. Specifically, we develop a new system, namely IoTMosaic, to first profile diverse user activities with distinct IoT device event sequences, which are extracted from smart home network traffic based on their TCP/IP data packet signatures. Given the challenges of missing and out-of-order IoT device events due to device malfunctions or varying network and system latencies, IoTMosaic further develops simple yet effective approximate matching algorithms to identify user activities from real-world IoT network traffic. Our experimental results on thousands of user activities in the smart home environment over two months show that our proposed algorithms can infer different user activities from IoT network traffic in smart homes with the overall accuracy, precision, and recall of 0.99, 0.99, and 1.00, respectively. 
    more » « less