Deep Learning (DL) methods have been transforming computer vision with innovative adaptations to other domains including climate change. For DL to pervade Science and Engineering (S&EE) applications where risk management is a core component, well-characterized uncertainty estimates must accompany predictions. However, S&E observations and model-simulations often follow heavily skewed distributions and are not well modeled with DL approaches, since they usually optimize a Gaussian, or Euclidean, likelihood loss. Recent developments in Bayesian Deep Learning (BDL), which attempts to capture uncertainties from noisy observations, aleatoric, and from unknown model parameters, epistemic, provide us a foundation. Here we present a discrete-continuous BDL model with Gaussian and lognormal likelihoods for uncertainty quantification (UQ). We demonstrate the approach by developing UQ estimates on “DeepSD’‘, a super-resolution based DL model for Statistical Downscaling (SD) in climate applied to precipitation, which follows an extremely skewed distribution. We find that the discrete-continuous models outperform a basic Gaussian distribution in terms of predictive accuracy and uncertainty calibration. Furthermore, we find that the lognormal distribution, which can handle skewed distributions, produces quality uncertainty estimates at the extremes. Such results may be important across S&E, as well as other domains such as finance and economics, where extremes are often of significant interest. Furthermore, to our knowledge, this is the first UQ model in SD where both aleatoric and epistemic uncertainties are characterized.
more »
« less
Measuring the Uncertainty of Environmental Good Preferences with Bayesian Deep Learning
Due to climate change and resulting natural disasters, there has been a growing interest in measuring the value of social goods to our society, like environmental conservation. Traditionally, the stated preference, such as contingent valuation, captures an economics-perspective on the value of environmental goods through the willingness to pay (WTP) paradigm. Where the economics theory to estimate the WTP using machine learning is the random utility model. However, the estimation of WTP depends on rather simple preference assumptions based on a linear functional form. These models are therefore unable to capture the complex uncertainty in the human decision-making process. Further, contingent valuation only uses the mean or median estimation of WTP. Yet it has been recognized that other quantiles of the WTP would be valuable to ensure the provision of social goods. In this work, we propose to leverage the Bayesian Deep Learning (BDL) models to capture the uncertainty in stated preference estimation. We focus on the probability of paying for an environmental good and the conditional distribution of WTP. The Bayesian deep learning model connects with the economics theory of the random utility model through the stochastic component on the individual preferences. For testing our proposed model, we work with both synthetic and real-world data. The results on synthetic data suggest the BDL can capture the uncertainty consistently with different distribution of WTP. For the real-world data, a forest conservation contingent valuation survey, we observed a high variability in the distribution of the WTP, suggesting high uncertainty in the individual preferences for social goods. Our research can be used to inform environmental policy, including the preservation of natural resources and other social good.
more »
« less
- Award ID(s):
- 2021871
- PAR ID:
- 10431065
- Date Published:
- Journal Name:
- 2022 ACM Conference on Information Technology for Social Good
- Page Range / eLocation ID:
- 103 to 109
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Due to COVID-19, many households faced hardships in the spring of 2020 – unemployment, an uncertain economic future, forced separation, and more. At the same time, the number of people who participated in outdoor recreation in many areas increased, as it was one of the few activities still permitted. How these experiences affect the public’s willingness to pay (WTP) for environmental public goods is unknown. During the early months of the pandemic, we conducted a stated preference survey to value statewide water quality improvements in Delaware. While a majority of participants report experiencing hardship of some sort (economic, emotional, etc.), mean household WTP declined by only 7 % by May 2020.more » « less
-
This paper discusses the theory and algorithms for interacting large language model agents (LLMAs) using methods from statistical signal processing and microeconomics. While both fields are mature, their application to decision-making involving interacting LLMAs remains unexplored. Motivated by Bayesian sentiment analysis on online platforms, we construct interpretable models and stochastic control algorithms that enable LLMAs to interact and perform Bayesian inference. Because interacting LLMAs learn from both prior decisions and external inputs, they can exhibit bias and herding behavior. Thus, developing interpretable models and stochastic control algorithms is essential to understand and mitigate these behaviors. This paper has three main results. First, we show using Bayesian revealed preferences from microeconomics that an individual LLMA satisfies the necessary and sufficient conditions for rationally inattentive (bounded rationality) Bayesian utility maximization and, given an observation, the LLMA chooses an action that maximizes a regularized utility. Second, we utilize Bayesian social learning to construct interpretable models for LLMAs that interact sequentially with each other and the environment while performing Bayesian inference. Our proposed models capture the herding behavior exhibited by interacting LLMAs. Third, we propose a stochastic control framework to delay herding and improve state estimation accuracy under two settings: 1) centrally controlled LLMAs and 2) autonomous LLMAs with incentives. Throughout the paper, we numerically demonstrate the effectiveness of our methods on real datasets for hate speech classification and product quality assessment, using open-source models like LLaMA and Mistral and closed-source models like ChatGPT. The main takeaway of this paper, based on substantial empirical analysis and mathematical formalism, is that LLMAs act as rationally bounded Bayesian agents that exhibit social learning when interacting. Traditionally, such models are used in economics to study interacting human decision-makers.more » « less
-
Abstract This paper analyzes public willingness to support farmer adoption of best management practices in Oklahoma’s Fort Cobb Watershed, a multiuse area for agriculture, residential water provision, and recreation. The study uses Oklahoma’s Meso-Scale Integrated Sociogeographic Network survey to conduct a contingent valuation analysis of a hypothetical, one-time tax that would support farmer adoption of pasture and riparian buffer management practices. Respondent heterogeneity is modeled using beta-binomial regression. Public support for the hypothetical program is stronger for the tandem implementation of riparian buffer establishment and pasture expansion (willingness to pay [WTP] = $290) and riparian buffer establishment (WTP = $317).more » « less
-
Preferences within a group of people are not uniform but follow a distribution. While existing alignment methods like Direct Preference Optimization (DPO) attempt to steer models to reflect human preferences, they struggle to capture the distributional pluralistic preferences within a group. These methods often skew toward dominant preferences, overlooking the diversity of opinions, especially when conflicting preferences arise. To address this issue, we propose Group Distributional Preference Optimization (GDPO), a novel framework that aligns language models with the distribution of preferences within a group by incorporating the concept of beliefs that shape individual preferences. GDPO calibrates a language model using statistical estimation of the group's belief distribution and aligns the model with belief-conditioned preferences, offering a more inclusive alignment framework than traditional methods. In experiments using both synthetic controllable opinion generation and real-world movie review datasets, we show that DPO fails to align with the targeted belief distributions, while GDPO consistently reduces this alignment gap during training. Additionally, our evaluation metrics demonstrate that GDPO outperforms existing approaches in aligning with group distributional preferences, marking a significant advance in pluralistic alignment.more » « less
An official website of the United States government

