skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anomalous properties in the potential energy landscape of a monatomic liquid across the liquid–gas and liquid–liquid phase transitions
As a liquid approaches the gas state, the properties of the potential energy landscape (PEL) sampled by the system become anomalous. Specifically, (i) the mechanically stable local minima of the PEL [inherent structures (IS)] can exhibit cavitation above the so-called Sastry volume, v S , before the liquid enters the gas phase. In addition, (ii) the pressure of the liquid at the sampled IS [i.e., the PEL equation of state, P IS ( v)] develops a spinodal-like minimum at v S . We perform molecular dynamics simulations of a monatomic water-like liquid and verify that points (i) and (ii) hold at high temperatures. However, at low temperatures, cavitation in the liquid and the corresponding IS occurs simultaneously and a Sastry volume cannot be defined. Remarkably, at intermediate/high temperatures, the IS of the liquid can exhibit crystallization, i.e., the liquid regularly visits the regions of the PEL that belong to the crystal state. The model liquid considered also exhibits a liquid–liquid phase transition (LLPT) between a low-density and a high-density liquid (LDL and HDL). By studying the behavior of P IS ( v) during the LLPT, we identify a Sastry volume for both LDL and HDL. The HDL Sastry volume marks the onset above which IS are heterogeneous (composed of LDL and HDL particles), analogous to points (i) and (ii) above. However, the relationship between the LDL Sastry volume and the onset of heterogeneous IS is less evident. We conclude by presenting a thermodynamic argument that can explain the behavior of the PEL equation of state P IS ( v) across both the liquid–gas phase transition and LLPT.  more » « less
Award ID(s):
2112550
PAR ID:
10431075
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
12
ISSN:
0021-9606
Page Range / eLocation ID:
124502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We perform path integral molecular dynamics (PIMD) simulations of a monatomic liquid that exhibits a liquid–liquid phase transition and liquid–liquid critical point. PIMD simulations are performed using different values of Planck’s constant h, allowing us to study the behavior of the liquid as nuclear quantum effects (NQE, i.e., atoms delocalization) are introduced, from the classical liquid ( h = 0) to increasingly quantum liquids ( h > 0). By combining the PIMD simulations with the ring-polymer molecular dynamics method, we also explore the dynamics of the classical and quantum liquids. We find that (i) the glass transition temperature of the low-density liquid (LDL) is anomalous, i.e., [Formula: see text] decreases upon compression. Instead, (ii) the glass transition temperature of the high-density liquid (HDL) is normal, i.e., [Formula: see text] increases upon compression. (iii) NQE shift both [Formula: see text] and [Formula: see text] toward lower temperatures, but NQE are more pronounced on HDL. We also study the glass behavior of the ring-polymer systems associated with the quantum liquids studied (via the path-integral formulation of statistical mechanics). There are two glass states in all the systems studied, low-density amorphous ice (LDA) and high-density amorphous ice (HDA), which are the glass counterparts of LDL and HDL. In all cases, the pressure-induced LDA–HDA transformation is sharp, reminiscent of a first-order phase transition. In the low-quantum regime, the LDA–HDA transformation is reversible, with identical LDA forms before compression and after decompression. However, in the high-quantum regime, the atoms become more delocalized in the final LDA than in the initial LDA, raising questions on the reversibility of the LDA–HDA transformation. 
    more » « less
  2. null (Ed.)
    Abstract We develop a two-dimensional model for the transient diffusion of gas from the cavities in ridge-type structured surfaces to a quiescent liquid suspended above them in the Cassie state to predict the location of the liquid vapor-interface (meniscus) as a function of time. The transient diffusion equation is numerically solved by a Chebyshev collocation (spectral) method coupled to the Young-Laplace equation and the ideal gas law. We capture the effects of variable meniscus curvature and, subsequently, when applicable, movement of triple contact lines. Results are presented for the evolution of the dissolved gas concentration field in the liquid and, when applicable, the time it takes for a meniscus to depin and that for longevity, i.e., the onset of the Cassie to Wenzel state transition. Two configurations are examined; viz., one where an impermeable membrane pressurizes the liquid above the ridges and one where hydrostatic pressure is considered and the top of the liquid is exposed to non-condensable gas. 
    more » « less
  3. Perfluorocarbon nanodroplets (PFCnDs) are ultrasound contrast agents that phase-transition from liquid nanodroplets to gas microbubbles when activated by laser irradiation or insonated with an ultrasound pulse. The dynamics of PFCnDs can vary drastically depending on the nanodroplet composition, including the lipid shell properties. In this paper, we investigate the effect of varying the ratio of PEGylated to non-PEGylated phospholipids in the outer shell of PFCnDs on the acoustic nanodroplet vaporization (liquid to gas phase transition) and inertial cavitation (rapid collapse of the vaporized nanodroplets) dynamics in vitro when insonated with focused ultrasound. Nanodroplets with a high concentration of PEGylated lipids had larger diameters and exhibited greater variance in size distribution compared to nanodroplets with lower proportions of PEGylated lipids in the lipid shell. PFCnDs with a lipid shell composed of 50:50 PEGylated to non-PEGylated lipids yielded the highest B-mode image intensity and duration, as well as the greatest pressure difference between acoustic droplet vaporization onset and inertial cavitation onset. We demonstrate that slight changes in lipid shell composition of PFCnDs can significantly impact droplet phase transitioning and inertial cavitation dynamics. These findings can help guide researchers to fabricate PFCnDs with optimized compositions for their specific applications. 
    more » « less
  4. Causal models have proven extremely useful in offering formal representations of causal relationships between a set of variables. Yet in many situations, there are non-causal relationships among variables. For example, we may want variables LDL, HDL, and TOT that represent the level of low-density lipoprotein cholesterol, the level of lipoprotein high-density lipoprotein cholesterol, and total cholesterol level, with the relation LDL+HDL=\OT. This cannot be done in standard causal models, because we can intervene simultaneously on all three variables. The goal of this paper is to extend standard causal models to allow for constraints on settings of variables. Although the extension is relatively straightforward, to make it useful we have to define a new intervention operation that disconnects a variable from a causal equation. We give examples showing the usefulness of this extension, and provide a sound and complete axiomatization for causal models with constraints. 
    more » « less
  5. The dynamic properties of liquid phase-change materials (PCMs), such as viscosity η and the atomic self-diffusion coefficient D , play an essential role in the ultrafast phase switching behavior of novel nonvolatile phase-change memory applications. To connect η to D , the Stokes-Einstein relation (SER) is commonly assumed to be valid at high temperatures near or above the melting temperature T m and is often used for assessing liquid fragility (or crystal growth velocity) of technologically important PCMs. However, using quasi-elastic neutron scattering, we provide experimental evidence for a breakdown of the SER even at temperatures above T m in the high–atomic mobility state of a PCM, Ge 1 Sb 2 Te 4 . This implies that although viscosity may have strongly increased during cooling, diffusivity can remain high owing to early decoupling, being a favorable feature for the fast phase switching behavior of the high-fluidity PCM. We discuss the origin of the observation and propose the possible connection to a metal-semiconductor and fragile-strong transition hidden below T m . 
    more » « less