Polymers of intrinsic microporosity (PIMs) have shown promise in pushing the limits of gas separation membranes, recently redefining upper bounds for a variety of gas pair separations. However, many of these membranes still suffer from reductions in permeability over time, removing the primary advantage of this class of polymer. In this work, a series of pentiptycene-based PIMs incorporated into copolymers with PIM-1 are examined to identify fundamental structure–property relationships between the configuration of the pentiptycene backbone and its accompanying linear or branched substituent group. The incorporation of pentiptycene provides a route to instill a more permanent, configuration-based free volume, resistant to physical aging via traditional collapse of conformation-based free volume. PPIM-ip-C and PPIM-np-S, copolymers with C- and S-shape backbones and branched isopropoxy and linear
- Award ID(s):
- 1647722
- PAR ID:
- 10431172
- Date Published:
- Journal Name:
- Industrial Chemistry & Materials
- ISSN:
- 2755-2608
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
n -propoxy substituent groups, respectively, each exhibited initial separation performance enhancements relative to PIM-1. Additionally, aging-enhanced gas permeabilities were observed, a stark departure from the typical permeability losses pure PIM-1 experiences with aging. Mixed-gas separation data showed enhanced CO2/CH4selectivity relative to the pure-gas permeation results, with only ∼20% decreases in selectivity when moving from a CO2partial pressure of ∼2.4 to ∼7.1 atm (atmospheric pressure) when utilizing a mixed-gas CO2/CH4feed stream. These results highlight the potential of pentiptycene’s intrinsic, configurational free volume for simultaneously delivering size-sieving above the 2008 upper bound, along with exceptional resistance to physical aging that often plagues high free volume PIMs. -
Abstract Gas‐separation polymer membranes display a characteristic permeability–selectivity trade‐off that has limited their industrial use. The most comprehensive approach to improving performance is to devise strategies that simultaneously increase fractional free volume, narrow free volume distribution, and enhance sorption selectivity, but generalizable methods for such approaches are exceedingly rare. Here, we present an in situ crosslinking and solid‐state deprotection method to access previously inaccessible sorption and diffusion characteristics in amine‐functionalized polymers of intrinsic microporosity. Free volume element (FVE) size can be increased while preserving a narrow FVE distribution, enabling below‐upper bound polymers to surpass the H2/N2, H2/CH4, and O2/N2upper bounds and improving CO2‐based selectivities by 200 %. This approach can transform polymers into chemical analogues with improved performance, thereby overcoming traditional permeability–selectivity trade‐offs.
-
Abstract Gas‐separation polymer membranes display a characteristic permeability–selectivity trade‐off that has limited their industrial use. The most comprehensive approach to improving performance is to devise strategies that simultaneously increase fractional free volume, narrow free volume distribution, and enhance sorption selectivity, but generalizable methods for such approaches are exceedingly rare. Here, we present an in situ crosslinking and solid‐state deprotection method to access previously inaccessible sorption and diffusion characteristics in amine‐functionalized polymers of intrinsic microporosity. Free volume element (FVE) size can be increased while preserving a narrow FVE distribution, enabling below‐upper bound polymers to surpass the H2/N2, H2/CH4, and O2/N2upper bounds and improving CO2‐based selectivities by 200 %. This approach can transform polymers into chemical analogues with improved performance, thereby overcoming traditional permeability–selectivity trade‐offs.
-
A solvent-free post-treatment process known as vapor phase infiltration (VPI) is used to engineer the organic solvent reverse osmosis (OSRO) performance of polymer of intrinsic microporosity 1 (PIM-1) membranes via infiltration of trimethylaluminum (TMA) metal-organic vapor. The infiltration of inorganic aluminum constituents hybridizes the pure polymer PIM-1 into an organic-inorganic material (AlOxHy/PIM-1) with enhanced chemical stability. A homogenous distribution of inorganic loading in PIM-1 is achieved due to the reaction-limited infiltration mechanism, and the OSRO performance is enhanced as a result. OSRO separations of ethanol/isooctane mixtures using these membranes are shown to be capable of breaking the azeotropic composition with a separation factor for ethanol over isooctane greater than 5 and an ethanol permeance of 0.1 Lm–2h–1bar–1. Thus, these organic-inorganic hybrid membranes created via VPI show promise as an alternative method for separating azeotropic liquid mixtures.more » « less
-
Abstract Polymer membranes with ultrahigh CO2permeabilities and high selectivities are needed to address some of the critical separation challenges related to energy and the environment, especially in natural gas purification and postcombustion carbon capture. However, very few solution‐processable, linear polymers are known today that access these types of characteristics, and all of the known structures achieve their separation performance through the design of rigid backbone chemistries that concomitantly increase chain stiffness and interchain spacing, thereby resulting in ultramicroporosity in solid‐state chain‐entangled films. Herein, the separation performance of a porous polymer obtained via ring‐opening metathesis polymerization is reported, which possesses a flexible backbone with rigid, fluorinated side chains. This polymer exhibits ultrahigh CO2permeability (>21 000 Barrer) and exceptional plasticization resistance (CO2plasticization pressure > 51 bar). Compared to traditional polymers of intrinsic microporosity, the rate of physical aging is slower, especially for gases with small effective diameters (i.e., He, H2, and O2). This structural design strategy, coupled with studies on fluorination, demonstrates a generalizable approach to create new polymers with flexible backbones and pore‐forming side chains that have unexplored promise for small‐molecule separations.