skip to main content


Title: Computational screen of M 2 P metal phosphides for catalytic ethane dehydrogenation
Metal phosphides are promising catalysts for hydrocarbon transformations, but computational screening is complicated by their diverse structures and compositions. To disentangle structural from compositional contributions, here we explore the metal-rich M 2 P (M = Fe, Co, Ni, Cu, Mo, Ru, Rh, Pd, Ag, Pt) series in hexagonal and orthorhombic structures that are common to a subset of these materials, using supercell density functional theory (DFT). To understand the contribution of metal choice to utility for catalytic ethane dehydrogenation (EDH), we compute and compare the adsorption of key EDH intermediates across low-index surface terminations. These materials expose both metal and phosphide sites. Calculations show that binding energies at metal sites correlate with the bulk metals, with P incorporation either enhancing or suppressing binding. Phosphide sites compete with metal sites for adsorbates and tend to suppress overactivation by destabilizing highly dehydrogenated species engaging in C–H bond breaking. Results are generally insensitive to bulk structure and surface facet. Results suggest metal-rich Pd phosphides to have favorable adsorption characteristics for catalytic dehydrogenation, consistent with recent observations.  more » « less
Award ID(s):
1647722
NSF-PAR ID:
10431180
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
12
Issue:
18
ISSN:
2044-4753
Page Range / eLocation ID:
5629 to 5639
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Urea synthesis through the simultaneous electrocatalytic reduction of N2and CO2molecules under ambient conditions holds great promises as a sustainable alternative to its industrial production, in which the development of stable, highly efficient, and highly selective catalysts to boost the chemisorption, activation, and coupling of inert N2and CO2molecules remains rather challenging. Herein, by means of density functional theory computations, we proposed a new class of two‐dimensional nanomaterials, namely, transition‐metal phosphide monolayers (TM2P, TM = Ti, Fe, Zr, Mo, and W), as the potential electrocatalysts for urea production. Our results showed that these TM2P materials exhibit outstanding stability and excellent metallic properties. Interestingly, the Mo2P monolayer was screened out as the best catalyst for urea synthesis due to its small kinetic energy barrier (0.35 eV) for C–N coupling, low limiting potential (−0.39 V), and significant suppressing effects on the competing side reactions. The outstanding catalytic activity of the Mo2P monolayer can be ascribed to its optimal adsorption strength with the key *NCON species due to its moderate positive charges on the Mo active sites. Our findings not only propose a novel catalyst with high‐efficiency and high‐selectivity for urea production but also further widen the potential applications of metal phosphides in electrocatalysis.

     
    more » « less
  2. Abstract

    Solid‐state electrocatalysis plays a crucial role in the development of renewable energy to reshape current and future energy needs. However, finding an inexpensive and highly active catalyst to replace precious metals remains a big challenge for this technology. Here, tri‐molybdenum phosphide (Mo3P) is found as a promising nonprecious metal and earth‐abundant candidate with outstanding catalytic properties that can be used for electrocatalytic processes. The catalytic performance of Mo3P nanoparticles is tested in the hydrogen evolution reaction (HER). The results indicate an onset potential of as low as 21 mV, H2formation rate, and exchange current density of 214.7 µmol s−1g−1cat(at only 100 mV overpotential) and 279.07 µA cm−2, respectively, which are among the closest values yet observed to platinum. Combined atomic‐scale characterizations and computational studies confirm that high density of molybdenum (Mo) active sites at the surface with superior intrinsic electronic properties are mainly responsible for the remarkable HER performance. The density functional theory calculation results also confirm that the exceptional performance of Mo3P is due to neutral Gibbs free energy (ΔGH*) of the hydrogen (H) adsorption at above 1/2 monolayer (ML) coverage of the (110) surface, exceeding the performance of existing non‐noble metal catalysts for HER.

     
    more » « less
  3. null (Ed.)
    Alloying is well-known to improve the dehydrogenation selectivity of pure metals, but there remains considerable debate about the structural and electronic features of alloy surfaces that give rise to this behavior. To provide molecular-level insights into these effects, a series of Pd intermetallic alloy catalysts with Zn, Ga, In, Fe and Mn promoter elements was synthesized, and the structures were determined using in situ X-ray absorption spectroscopy (XAS) and synchrotron X-ray diffraction (XRD). The alloys all showed propane dehydrogenation turnover rates 5–8 times higher than monometallic Pd and selectivity to propylene of over 90%. Moreover, among the synthesized alloys, Pd 3 M alloy structures were less olefin selective than PdM alloys which were, in turn, almost 100% selective to propylene. This selectivity improvement was interpreted by changes in the DFT-calculated binding energies and activation energies for C–C and C–H bond activation, which are ultimately influenced by perturbation of the most stable adsorption site and changes to the d-band density of states. Furthermore, transition state analysis showed that the C–C bond breaking reactions require 4-fold ensemble sites, which are suggested to be required for non-selective, alkane hydrogenolysis reactions. These sites, which are not present on alloys with PdM structures, could be formed in the Pd 3 M alloy through substitution of one M atom with Pd, and this effect is suggested to be partially responsible for their slightly lower selectivity. 
    more » « less
  4. Abstract

    The electrochemical CO2reduction reaction (CO2RR) is a promising approach to achieving sustainable electrical‐to‐chemical energy conversion and storage while decarbonizing the emission‐heavy industry. The carbon‐supported, nitrogen‐coordinated, and atomically dispersed metal sites are effective catalysts for CO generation due to their high activity, selectivity, and earth abundance. Here, we discuss progress, challenges, and opportunities for designing and engineering atomic metal catalysts from single to dual metal sites. Engineering single metal sites using a nitrogen‐doped carbon model was highlighted to exclusively study the effect of carbon particle sizes, metal contents, and M−N bond structures in the form of MN4moieties on catalytic activity and selectivity. The structure‐property correlation was analyzed by combining experimental results with theoretical calculations to uncover the CO2to CO conversion mechanisms. Furthermore, dual‐metal site catalysts, inheriting the merits of single‐metal sites, have emerged as a new frontier due to their potentially enhanced catalytic properties. Designing optimal dual metal site catalysts could offer additional sites to alter the surface adsorption to CO2and various intermediates, thus breaking the scaling relationship limitation and activity‐stability trade‐off. The CO2RR electrolysis in flow reactors was discussed to provide insights into the electrolyzer design with improved CO2utilization, reaction kinetics, and mass transport.

     
    more » « less
  5. Abstract

    The electrochemical CO2reduction reaction (CO2RR) is a promising approach to achieving sustainable electrical‐to‐chemical energy conversion and storage while decarbonizing the emission‐heavy industry. The carbon‐supported, nitrogen‐coordinated, and atomically dispersed metal sites are effective catalysts for CO generation due to their high activity, selectivity, and earth abundance. Here, we discuss progress, challenges, and opportunities for designing and engineering atomic metal catalysts from single to dual metal sites. Engineering single metal sites using a nitrogen‐doped carbon model was highlighted to exclusively study the effect of carbon particle sizes, metal contents, and M−N bond structures in the form of MN4moieties on catalytic activity and selectivity. The structure‐property correlation was analyzed by combining experimental results with theoretical calculations to uncover the CO2to CO conversion mechanisms. Furthermore, dual‐metal site catalysts, inheriting the merits of single‐metal sites, have emerged as a new frontier due to their potentially enhanced catalytic properties. Designing optimal dual metal site catalysts could offer additional sites to alter the surface adsorption to CO2and various intermediates, thus breaking the scaling relationship limitation and activity‐stability trade‐off. The CO2RR electrolysis in flow reactors was discussed to provide insights into the electrolyzer design with improved CO2utilization, reaction kinetics, and mass transport.

     
    more » « less