skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Structure of LARP7 Protein p65–telomerase RNA Complex in Telomerase Revealed by Cryo-EM and NMR
Award ID(s):
2016540
NSF-PAR ID:
10431225
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Molecular Biology
Volume:
435
Issue:
11
ISSN:
0022-2836
Page Range / eLocation ID:
168044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Telomerase synthesizes chromosome-capping telomeric repeats using an active site in telomerase reverse transcriptase (TERT) and an integral RNA subunit template. The fundamental question of whether human telomerase catalytic activity requires cooperation across two TERT subunits remains under debate. In this study, we describe new approaches of subunit labeling for single-molecule imaging, applied to determine the TERT content of complexes assembled in cells or cell extract. Surprisingly, telomerase reconstitutions yielded heterogeneous DNA-bound TERT monomer and dimer complexes in relative amounts that varied with assembly and purification method. Among the complexes, cellular holoenzyme and minimal recombinant enzyme monomeric for TERT had catalytic activity. Dimerization was suppressed by removing a TERT domain linker with atypical sequence bias, which did not inhibit cellular or minimal enzyme assembly or activity. Overall, this work defines human telomerase DNA binding and synthesis properties at single-molecule level and establishes conserved telomerase subunit architecture from single-celled organisms to humans.

     
    more » « less
  2. null (Ed.)
    Telomerase is a ribonucleoprotein complex that counteracts the shortening of chromosome ends due to incomplete replication. Telomerase contains a catalytic core of telomerase reverse transcriptase (TERT) and telomerase RNA (TER). However, what defines TERT and separates it from other reverse transcriptases remains a subject of debate. A recent cryoelectron microscopy map of Tetrahymena telomerase revealed the structure of a previously uncharacterized TERT domain (TRAP) with unanticipated interactions with the telomerase essential N-terminal (TEN) domain and roles in telomerase activity. Both TEN and TRAP are absent in the putative Tribolium TERT that has been used as a model for telomerase for over a decade. To investigate the conservation of TRAP and TEN across species, we performed multiple sequence alignments and statistical coupling analysis on all identified TERTs and find that TEN and TRAP have coevolved as telomerase-specific domains. Integrating the data from bioinformatic analysis and the structure of Tetrahymena telomerase, we built a pseudoatomic model of human telomerase catalytic core that accounts for almost all of the cryoelectron microscopy density in a published map, including TRAP in previously unassigned density as well as telomerase RNA domains essential for activity. This more complete model of the human telomerase catalytic core illustrates how domains of TER and TERT, including the TEN–TRAP complex, can interact in a conserved manner to regulate telomere synthesis. 
    more » « less
  3. Telomerase is a eukaryotic ribonucleoprotein (RNP) enzyme that adds DNA repeats onto chromosome ends to maintain genomic stability and confer cellular immortality in cancer and stem cells. The telomerase RNA (TER) component is essential for telomerase catalytic activity and provides the template for telomeric DNA synthesis. The biogenesis of TERs is extremely divergent across eukaryotic kingdoms, employing distinct types of transcription machinery and processing pathways. In ciliates and plants, TERs are transcribed by RNA polymerase III (Pol III), while animal and ascomycete fungal TERs are transcribed by RNA Pol II and share biogenesis pathways with small nucleolar RNA (snoRNA) and small nuclear RNA (snRNA), respectively. Here, we report an unprecedented messenger RNA (mRNA)-derived biogenesis pathway for the 1,291 nucleotide TER from the basidiomycete fungus Ustilago maydis . The U. maydis TER ( Um TER) contains a 5′-monophosphate, distinct from the 5′ 2,2,7-trimethylguanosine (TMG) cap common to animal and ascomycete fungal TERs. The mature Um TER is processed from the 3′-untranslated region (3′-UTR) of a larger RNA precursor that possesses characteristics of mRNA including a 5′ 7-methyl-guanosine (m 7 G) cap, alternative splicing of introns, and a poly(A) tail. Moreover, this mRNA transcript encodes a protein called Early meiotic induction protein 1 (Emi1) that is conserved across dikaryotic fungi. A recombinant Um TER precursor expressed from an mRNA promoter is processed correctly to yield mature Um TER, confirming an mRNA-processing pathway for producing TER. Our findings expand the plethora of TER biogenesis mechanisms and demonstrate a pathway for producing a functional long noncoding RNA from a protein-coding mRNA precursor. 
    more » « less