This study evaluated the performance of sequencing batch reactors (SBR) in the fate and transport of dissolved organic nitrogen (DON) using a blend of wastewater and landfill leachate. Most nitrogen removal methods concentrate on inorganic nitrogen, whereas some biological processes add DON to the effluent. Two reactors were introduced with wastewater and landfill leachate of high and low organic carbon and compared them to a reactor without leachate. DON transformation, characterization, and microbial community dispersion were examined to understand the effects of leachate-induced effluent DON on the biological nitrogen removal process. The ammonium removal efficiencies were found 96, 97, and 98%; COD removal efficiencies were 75, 59, and 63%; and total nitrogen (TN) removal efficiencies were 83, 86, and 88%, for R1, R2, and R3, respectively. The effluent nitrate concentrations were found 1.67 ± 0.89 (R1), 3.05 ± 2.08 (R2), and 1.31 ± 1.30 (R3) mg/L and DON went down from 9.67 ± 2.5 to 6.02 ± 2.8 mg/L (R1), 9.29 ± 3.4 to 7.49 ± 3.6 mg/L (R2), and 3.59 ± 1.6 to 2.08 ± 1.1 mg/L (R3). Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and excitation-emission matrices (EEMs) with parallel factor (PARAFAC) analysis were used to characterize DON. Microbial community analysis was also conducted. Leachate-induced DON discharge's environmental effects were assessed using in-situ aquatic ecosystem algal bioassay. SBR system removed most inorganic nitrogen species and a small amount of leachate-induced DON. The study emphasizes the need for independent investigations to assess their effects on receiving water bodies.
more »
« less
Evaluation of Physicochemical Treatment Technologies for Landfill Leachate Induced Dissolved Organic Nitrogen (DON).
Landfill leachate contains high levels of dissolved organic nitrogen (DON) that can be detrimental to aquatic life and water quality because it promotes the growth of harmful algal blooms (HABs). This study used physicochemical treatment technologies such as Fenton treatment and Granular Activated Carbon (GAC) adsorption to assess the breakdown and removal of landfill leachate-induced DON. The physicochemical treatments were applied to effluents of two bioreactors treating blended wastewater and landfill leachate. Bioreactor-1 (R1) was fed with high organic landfill leachate, and bioreactor-2 (R2) was fed with low organic landfill leachate. For R1 effluent, the Fenton treatment removed 66±9.2% COD and 52.4±8.7% DON at an optimum dosage of 200mg/L H2O2 and 1000mg/L FeSO4.7H2O. On the other hand, GAC removed 94.4±4.9% COD and 85.9±4.6% DON at an optimum dosage of 10g/L GAC. For R2 effluent, the Fenton treatment removed 75.8±6.6% COD and 60.3±3.2% DON at an optimum dosage of 200mg/L H2O2 and 1000mg/L FeSO4.7H2O. On the contrary, GAC treatment removed 92.2±4.3% COD and 92.3±3.7% DON at an optimum dosage of 10g/L GAC. Moreover, fluorescence spectrophotometry combined with parallel factor analysis (PARAFAC) was employed to provide insight into the DON degradation mechanisms. The study found that Fenton treatment and GAC adsorption both can effectively reduce DON in landfill leachate. However, GAC treatment was superior to Fenton treatment in eliminating DON from landfill leachate, while Fenton treatment may convert DON into inorganic nitrogen. The study emphasizes properly handling landfill leachate to avoid nitrogen contamination and harmful algal blooms in aquatic ecosystems.
more »
« less
- Award ID(s):
- 2101053
- PAR ID:
- 10431232
- Date Published:
- Journal Name:
- AEESP Research and Education Conference, Northeastern University, June 20-23, 2023
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Transforming the organic fraction of municipal solid waste (OFMSW) into biochar to reduce fugitive landfill emissions and control organic micropollutants (OMP) during landfill leachate treatment could provide a new circular economy organics diversion approach. However, research on landfill leachate treatment under consistent, representative conditions with biochar derived from the wide range of OFMSW components is needed. Further, the competitive nature of leachate dissolved organic matter (DOM) for biochar adsorption sites has not been examined. To this end, biochars were produced from seven diverse OFMSW types and batch tested using two representative organic contaminants. To evaluate leachate DOM impact on OMP removal and fouling mitigation with biochar enhancement methods, experiments were performed with three background matrices (deionized water, synthetic leachate, real leachate) and two enhancement methods (ash-pretreatment, double-heating). Since evaluating all possible OFMSW feedstock combinations is infeasible, fundamental relationships between individual feedstocks and biochar properties were evaluated. Overall, biochar performance varied substantially; the dose to achieve a given target removal spanned an order of magnitude between the OFMSW feedstocks. Also, the presence of leachate DOM more negatively impacted the performance of all biochars relative to the benchmark adsorbent activated carbon. Finally, the enhancement methods altered biochar pore structure by increasing micropore and slightly decreasing non-micropore surface areas, resulting in improved adsorption capacity (by 23 to 93%). By providing the basis for a low-cost, enhanced leachate treatment method, this study could incentivize a novel organics diversion approach that reduces climate change impacts, harvests energy from waste, and reduces landfill air emissions.more » « less
-
Nitrate is a frequent water pollutant that results from human activities such as fertilizer over-application and agricultural runoff and improper disposal of human and animals waste. Excess levels of nitrate in watersheds can trigger harmful algal blooms (HABs) and biodiversity loss with consequences that affect the economy and pose a threat to human health. Municipal drinking water and wastewater treatment plants are therefore required to control nitrogen levels to ensure the safety of drinking water and the proper discharge of effluent. Nitrate exhibits distinct absorption bands in the infrared spectral range. While infrared radiation is strongly attenuated in water, implementation of fiber optic evanescent wave spectroscopy (FEWS) enables monitoring of water contaminants in real-time with high sensitivity. This work outlines the development of a non-dispersive infrared (NDIR) detector for the real-time monitoring of nitrate, nitrite and ammonia concentrations targeting implementation at municipal wastewater treatment plants (WWTPs) and onsite wastewater treatment systems (OWTS).more » « less
-
In the rapidly changing Arctic ecosystem, the recent emergence of harmful algal blooms (HABs) threatens human and ecosystem health. There is increasing evidence that toxic dinoflagellates of the Alexandrium genus are blooming in the Pacific Arctic Ocean, in dense enough concentrations to necessitate shellfishing closures and to detect toxins in marine mammals that forge in Alaskan waters. Our understanding of the nutrient dynamics that sustain HABs in the Pacific Arctic is severely limited, particularly as these blooms tend to occur in late summer when dissolved inorganic nitrogen is drawn down and limits phytoplankton growth. Dissolved organic nitrogen could prove a critical nitrogen source for HABs in the Pacific Arctic, as it has in other regions. This dataset presents measurements taken on Leg 2 of a research cruise (NRS2022_02S) on the Research Vessel (R/V) Norseman II in Aug-Sep 2022 to characterize the nutrient usage by A. catenella. It includes the nutrients (silicate, phosophate, total dissolved nitrogen, and four dissolved nitrogen substrates), particulate organic carbon and nitrogen, and chlorophyll concentrations associated with the beginning of 13 incubation experiments in which we measured nitrogen uptake rates by the surface biological community. We also include the salinity and temperature measurements from CTD-mounted sensors for water collection from Niskin bottles for each incubation set up. Other associated datasets include: Leah McRaven & Robert Pickart. (2024). Conductivity Temperature Depth (CTD) data from the Norseman II (NRS22-1s and NRS22-2s), as part of the 2022 Origin and Fate of Harmful Algal Blooms in the Warming Chukchi Sea cruise. Arctic Data Center. doi:10.18739/A2B853K56. Evangeline Fachon, Donald M Anderson, Mrunmayee Pathare, Michael Brosnahan, Eric Muhlbach, Kali Horn, Nathaniel Spada, & Anushka Rajagopalan. (2024). Alexandrium catenella planktonic cell abundance and toxicity from the Norseman II (NRS2022_01S and NRS2022_02S), as part of the 2022 Origin and Fate of Harmful Algal Blooms in the Warming Chukchi Sea cruise. Arctic Data Center. doi:10.18739/A2804XM7S. Miguel Goni & Dean Stockwell. (2024). Conductivity-Temperature-Depth (CTD) Bottle Data from the Norseman II cruises (NRS2022_01S and NRS2022_02S) including Particulate Organic Carbon (POC) Particulate Nitrogen (PN), Chlorophyll (Chl), Phaeophytin (Phaeo), and dissolved nutrients (Nitrate, Nitrite, Phosphate, Silicate, and Ammonium) (2022). Arctic Data Center. doi:10.18739/A2M90249T.more » « less
-
The concurrent reduction in acid deposition and increase in precipitation impact stream solute dynamics in complex ways that make predictions of future water quality difficult. To understand how changes in acid deposition and precipitation have influenced dissolved organic carbon (DOC) and nitrogen (N) loading to streams, we investigated trends from 1991 to 2018 in stream concentrations (DOC, ~3,800 measurements), dissolved organic nitrogen (DON, ~1,160 measurements), and dissolved inorganic N (DIN, ~2,130 measurements) in a forested watershed in Vermont, USA. Our analysis included concentration-discharge (C-Q) relationships and Seasonal Mann-Kendall tests on long-term, flow-adjusted concentrations. To understand whether hydrologic flushing and changes in acid deposition influenced long-term patterns by liberating DOC and dissolved N from watershed soils, we measured their concentrations in the leachate of 108 topsoil cores of 5 cm diameter that we flushed with solutions simulating high and low acid deposition during four different seasons. Our results indicate that DOC and DON often co-varied in both the long-term stream dataset and the soil core experiment. Additionally, leachate from winter soil cores produced especially high concentrations of all three solutes. This seasonal signal was consistent with C-Q relation showing that organic materials (e.g., DOC and DON), which accumulate during winter, are flushed into streams during spring snowmelt. Acid deposition had opposite effects on DOC and DON compared to DIN in the soil core experiment. Low acid deposition solutions, which mimic present day precipitation, produced the highest DOC and DON leachate concentrations. Conversely, high acid deposition solutions generally produced the highest DIN leachate concentrations. These results are consistent with the increasing trend in stream DOC concentrations and generally decreasing trend in stream DIN we observed in the long-term data. These results suggest that the impact of acid deposition on the liberation of soil carbon (C) and N differed for DOC and DON vs. DIN, and these impacts were reflected in long-term stream chemistry patterns. As watersheds continue to recover from acid deposition, stream C:N ratios will likely continue to increase, with important consequences for stream metabolism and biogeochemical processes.more » « less
An official website of the United States government

