skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface nitrogen conditions associated with bottle uptake measurements during a summer 2022 Alexandrium catenella bloom in the Alaskan Arctic (NRS2022_02S)
In the rapidly changing Arctic ecosystem, the recent emergence of harmful algal blooms (HABs) threatens human and ecosystem health. There is increasing evidence that toxic dinoflagellates of the Alexandrium genus are blooming in the Pacific Arctic Ocean, in dense enough concentrations to necessitate shellfishing closures and to detect toxins in marine mammals that forge in Alaskan waters. Our understanding of the nutrient dynamics that sustain HABs in the Pacific Arctic is severely limited, particularly as these blooms tend to occur in late summer when dissolved inorganic nitrogen is drawn down and limits phytoplankton growth. Dissolved organic nitrogen could prove a critical nitrogen source for HABs in the Pacific Arctic, as it has in other regions. This dataset presents measurements taken on Leg 2 of a research cruise (NRS2022_02S) on the Research Vessel (R/V) Norseman II in Aug-Sep 2022 to characterize the nutrient usage by A. catenella. It includes the nutrients (silicate, phosophate, total dissolved nitrogen, and four dissolved nitrogen substrates), particulate organic carbon and nitrogen, and chlorophyll concentrations associated with the beginning of 13 incubation experiments in which we measured nitrogen uptake rates by the surface biological community. We also include the salinity and temperature measurements from CTD-mounted sensors for water collection from Niskin bottles for each incubation set up. Other associated datasets include: Leah McRaven & Robert Pickart. (2024). Conductivity Temperature Depth (CTD) data from the Norseman II (NRS22-1s and NRS22-2s), as part of the 2022 Origin and Fate of Harmful Algal Blooms in the Warming Chukchi Sea cruise. Arctic Data Center. doi:10.18739/A2B853K56. Evangeline Fachon, Donald M Anderson, Mrunmayee Pathare, Michael Brosnahan, Eric Muhlbach, Kali Horn, Nathaniel Spada, & Anushka Rajagopalan. (2024). Alexandrium catenella planktonic cell abundance and toxicity from the Norseman II (NRS2022_01S and NRS2022_02S), as part of the 2022 Origin and Fate of Harmful Algal Blooms in the Warming Chukchi Sea cruise. Arctic Data Center. doi:10.18739/A2804XM7S. Miguel Goni & Dean Stockwell. (2024). Conductivity-Temperature-Depth (CTD) Bottle Data from the Norseman II cruises (NRS2022_01S and NRS2022_02S) including Particulate Organic Carbon (POC) Particulate Nitrogen (PN), Chlorophyll (Chl), Phaeophytin (Phaeo), and dissolved nutrients (Nitrate, Nitrite, Phosphate, Silicate, and Ammonium) (2022). Arctic Data Center. doi:10.18739/A2M90249T.  more » « less
Award ID(s):
2112863
PAR ID:
10555246
Author(s) / Creator(s):
; ;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
chlorophyll nitrate ammonia urea dissolved free amino acids
Format(s):
Medium: X Other: text/xml
Location:
Chukchi and West Beaufort Seas
Institution:
Stanford University
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In recent years, blooms of the neurotoxic dinoflagellateAlexandrium catenellahave been documented in Pacific Arctic waters, and the paralytic shellfish toxins (PSTs) that this species produces have been detected throughout the food web. These observations have raised significant concerns about the role that harmful algal blooms (HABs) will play in a rapidly changing Arctic. During a research cruise in summer 2022, a massive bloom ofA. catenellawas detected in real time as it was advected through the Bering Strait region. The bloom was exceptional in both spatial scale and density, extending > 600 km latitudinally, reaching concentrations > 174,000 cells L−1, and producing high‐potency PST congeners. Throughout the event, coastal stakeholders in the region were engaged and a multi‐faceted community response was mobilized. This unprecedented bloom highlighted the urgent need for response capabilities to ensure safe utilization of critical marine resources in a region that has little experience with HABs. 
    more » « less
  2. Harmful algal blooms (HABs) present an emerging threat to human and ecosystem health in the Alaskan Arctic. Two HAB toxins are of concern in the region: saxitoxins (STXs), a family of compounds produced by the dinoflagellate Alexandrium catenella, and domoic acid (DA), produced by multiple species in the diatom genus Pseudo-nitzschia. These potent neurotoxins cause paralytic and amnesic shellfish poisoning, respectively, in humans, and can accumulate in marine organisms through food web transfer, causing illness and mortality among a suite of wildlife species. With pronounced warming in the Arctic, along with enhanced transport of cells from southern waters, there is significant potential for more frequent and larger HABs of both types. STXs and DA have been detected in the tissues of a range of marine organisms in the region, many of which are important food resources for local residents. The unique nature of the Alaskan Arctic, including difficult logistical access, lack of response infrastructure, and reliance of coastal populations on the noncommercial acquisition of marine resources for nutritional, cultural, and economic well-being, poses urgent and significant challenges as this region warms and the potential for impacts from HABs expands. 
    more » « less
  3. Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella , a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based. 
    more » « less
  4. Toxic and harmful algal blooms (HABs) are a global problem affecting human health, marine ecosystems, and coastal economies, the latter through their impact on aquaculture, fisheries, and tourism. As our knowledge and the techniques to study HABs advance, so do international monitoring efforts, which have led to a large increase in the total number of reported cases. However, in addition to increased detections, environmental factors associated with global change, mainly high nutrient levels and warming temperatures, are responsible for the increased occurrence, persistence, and geographical expansion of HABs. The Chilean Patagonian fjords provide an “open-air laboratory” for the study of climate change, including its impact on the blooms of several toxic microalgal species, which, in recent years, have undergone increases in their geographical range as well as their virulence and recurrence (the species Alexandrium catenella, Pseudochattonella verruculosa, and Heterosigma akashiwo, and others of the genera Dinophysis and Pseudo-nitzschia). Here, we review the evolution of HABs in the Chilean Patagonian fjords, with a focus on the established connections between key features of HABs (expansion, recurrence, and persistence) and their interaction with current and predicted global climate-change-related factors. We conclude that large-scale climatic anomalies such as the lack of rain and heat waves, events intensified by climate change, promote the massive proliferation of these species by creating ideal conditions for their growth and persistence, as they affect water-column stratification, nutrient inputs, and reproductive rates. 
    more » « less
  5. Samples for the analysis of dissolved nutrients were collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) from the water column, sea ice cores and from special events/locations (e.g., leads, melt ponds, brine, incubation experiments). Samples for dissolved inorganic nutrients (NO3 +NO2 , NO2 , PO4 , Si(OH)4, NH4 ) were analysed onboard during PS122 legs 1 to 3, with duplicate samples collected from CTD casts for later analysis of total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP). From leg 4, all samples collected were stored frozen at -20°C for later analysis. Analyses of stored samples were carried out at the AWI Nutrient Facility between January and March 2021. Nutrient analyses onboard and on land were carried out using a Seal Analytical AA3 continuous flow autoanalyser, controlled by the AACE software version 7.09. Best practice procedures for the measurement of nutrients were adopted following GO-SHIP recommendations (Hydes et al., 2010; Becker et al., 2019). Descriptions of sample collection and handling can be found in the various cruise reports (Haas & Rabe, 2023; Kanzow & Damm, 2023; Rex & Metfies, 2023; Rex & Nicolaus, 2023; Rex & Shupe, 2023). Here we provide data from the water column, obtained from the analysis of discrete samples collected from CTD-Rosette casts from Polarstern (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_321) and Ocean City (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_935). Data from sea ice cores and special events are presented elsewhere. Data from sea ice cores and special events are presented elsewhere. For reference, here we included data from CTD-BTL files associated with nutrient samples. These data are presented by Tippenhauer et al. (2023) Polarstern CTD and Tippenhauer et al. (2023) Ocean City CTD. 
    more » « less