skip to main content


Title: An air-stable radical with a redox-chameleonic amide
An air-stable (amino)(amido)radical was synthesized by reacting a cyclic (alkyl)(amino)carbene with carbazoyl chloride, followed by one-electron reduction. We show that an adjacent radical center weakens the amide bond. It enables the amino group to act as a strong acceptor under steric contraint, thus enhancing the stabilizing capto-dative effect.  more » « less
Award ID(s):
1954380 2246948
NSF-PAR ID:
10431237
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
59
Issue:
5
ISSN:
1359-7345
Page Range / eLocation ID:
595 to 598
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    α‐Amino nitriles are versatile structural motifs in a variety of biologically active compounds and pharmaceuticals and they serve as valuable building blocks in synthesis. The preparation of α‐ and β‐functionalized α‐amino nitriles from readily available scaffolds, however, remains challenging. Herein is reported a novel dual catalytic photoredox/copper‐catalyzed chemo‐ and regioselective radical carbocyanation of 2‐azadienes to access functionalized α‐amino nitriles by using redox‐active esters (RAEs) and trimethylsilyl cyanide. This cascade process employs a broad scope of RAEs and provides the corresponding α‐amino nitrile building blocks in 50–95 % yields (51 examples, regioselectivity >95 : 5). The products were transformed into prized α‐amino nitriles and α‐amino acids. Mechanistic studies suggest a radical cascade coupling process.

     
    more » « less
  2. Abstract

    α‐Amino nitriles are versatile structural motifs in a variety of biologically active compounds and pharmaceuticals and they serve as valuable building blocks in synthesis. The preparation of α‐ and β‐functionalized α‐amino nitriles from readily available scaffolds, however, remains challenging. Herein is reported a novel dual catalytic photoredox/copper‐catalyzed chemo‐ and regioselective radical carbocyanation of 2‐azadienes to access functionalized α‐amino nitriles by using redox‐active esters (RAEs) and trimethylsilyl cyanide. This cascade process employs a broad scope of RAEs and provides the corresponding α‐amino nitrile building blocks in 50–95 % yields (51 examples, regioselectivity >95 : 5). The products were transformed into prized α‐amino nitriles and α‐amino acids. Mechanistic studies suggest a radical cascade coupling process.

     
    more » « less
  3. ABSTRACT

    In this work, by means of quantum chemistry (Density Functional Theory (DFT), PW6B95/def2-TZVPP; DLPNO-CCSD(T)/CBS), HCN polymerization [(HCN)1 − 4] initiated and catalysed by a siloxyl radical (Si-O•) on a model silica surface is analysed. Linear HCN polymers (pHCN) are obtained by a radical initiated mechanism at a SiO• site and are characterized by a -(HC-N)- skeleton due to radical localization on the terminal N atom and radical attack on the C centre. NC heterocycles are formed by cyclization of the linear SiO-(HCN)3 − 4 and are always thermodynamically preferred over their linear counterparts, acting as thermodynamic sinks. Of particular interest to the astrochemistry community is the formation of the N-heterocycle 1,3,5-triazine that can be released into the gas phase at relatively low T (ΔG† = 23.3 kcal/mol). Full hydrogenation of SiO-(HCN•) follows two reaction channels with products: (a) SiO-CH3 + •NH2 or (b) amino-methanol + Si•, though characterized by slow kinetics. Nucleophilic addition of H2O to the electron-rich SiO-(HCN•) shows an unfavourable thermodynamics as well as a high-activation energy. The cleavage of the linear (HCN)1−4 from the SiO• site also shows a high thermodynamic energy penalty (ΔG≥82.0 kcal/mol). As a consequence, the silicate surface will be passivated by a chemically active ‘pHCN brush’ modifying the surface physico-chemical properties. The prospect of surface-catalysed HCN polymers exhibiting a high degree of chemical reactivity and proposed avenues for the formation of 1,3,5-triazine and amino-methanol opens exciting new chemical pathways to Complex Organic Matter formation in astrochemistry.

     
    more » « less
  4. Carbon nanodots (CNDs) have shown good antioxidant capabilities by scavenging oxidant free radicals such as diphenyl-1-picrylhydrazyl radical (DPPH•) and reactive oxygen species. While some studies suggest that the antioxidation activities associate to the proton donor role of surface active groups like carboxyl groups (–COOH), it is unclear how exactly the extent of oxidant scavenging potential and its related mechanisms are influenced by functional groups on CNDs’ surfaces. In this work, carboxyl and the amino functional groups on CNDs’ surfaces are modified to investigate the individual influence of intermolecular interactions with DPPH• free radical by UV-Vis spectroscopy and electrochemistry. The results suggest that both the carboxyl and the amino groups contribute to the antioxidation activity of CNDs through either a direct or indirect hydrogen atom transfer reaction with DPPH•. 
    more » « less
  5. Photoenzymatic catalysts are attractive for stereoselective radical reactions because the transformation occurs within tunable enzyme active sites. When using flavoproteins for non-natural photoenzymatic reactions, reductive mechanisms are often used for radical initiation. Oxidative mechanisms for radical formation would enable abundant functional groups, such as amines and carboxylic acids, to serve as radical precursors. However, excited state flavin is short-lived in many proteins because of rapid quenching by the protein scaffold. Here we report that adding an exogenous Ru(bpy)3 2+ cofactor to flavin-dependent ‘ene’-reductases enables the redox-neutral decarboxylative coupling of amino acids with vinylpyridines with high yield and enantioselectivity. Additionally, stereo-complementary enzymes are found to provide access to both enantiomers of the product. Mechanistic studies indicate that Ru(bpy)3 2+ binds to the protein, helping to localize radical formation to the enzyme’s active site. This work expands the types of transformation that can be rendered asymmetric using photoenzymatic catalysis and provides an intriguing mechanism of radical initiation. 
    more » « less