Linear regression on network-linked observations has been an essential tool in modelling the relationship between response and covariates with additional network structures. Previous methods either lack inference tools or rely on restrictive assumptions on social effects and usually assume that networks are observed without errors. This paper proposes a regression model with non-parametric network effects. The model does not assume that the relational data or network structure is exactly observed and can be provably robust to network perturbations. Asymptotic inference framework is established under a general requirement of the network observational errors, and the robustness of this method is studied in the specific setting when the errors come from random network models. We discover a phase-transition phenomenon of the inference validity concerning the network density when no prior knowledge of the network model is available while also showing a significant improvement achieved by knowing the network model. Simulation studies are conducted to verify these theoretical results and demonstrate the advantage of the proposed method over existing work in terms of accuracy and computational efficiency under different data-generating models. The method is then applied to middle school students' network data to study the effectiveness of educational workshops in reducing school conflicts.
more »
« less
Linear Regression and Its Inference on Noisy Network-Linked Data
Abstract Linear regression on network-linked observations has been an essential tool in modelling the relationship between response and covariates with additional network structures. Previous methods either lack inference tools or rely on restrictive assumptions on social effects and usually assume that networks are observed without errors. This paper proposes a regression model with non-parametric network effects. The model does not assume that the relational data or network structure is exactly observed and can be provably robust to network perturbations. Asymptotic inference framework is established under a general requirement of the network observational errors, and the robustness of this method is studied in the specific setting when the errors come from random network models. We discover a phase-transition phenomenon of the inference validity concerning the network density when no prior knowledge of the network model is available while also showing a significant improvement achieved by knowing the network model. Simulation studies are conducted to verify these theoretical results and demonstrate the advantage of the proposed method over existing work in terms of accuracy and computational efficiency under different data-generating models. The method is then applied to middle school students' network data to study the effectiveness of educational workshops in reducing school conflicts.
more »
« less
- PAR ID:
- 10431301
- Date Published:
- Journal Name:
- Journal of the Royal Statistical Society Series B: Statistical Methodology
- Volume:
- 84
- Issue:
- 5
- ISSN:
- 1369-7412
- Page Range / eLocation ID:
- 1851 to 1885
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We develop a new method to fit the multivariate response linear regression model that exploits a parametric link between the regression coefficient matrix and the error covariance matrix. Specifically, we assume that the correlations between entries in the multivariate error random vector are proportional to the cosines of the angles between their corresponding re- gression coefficient matrix columns, so as the angle between two regression coefficient matrix columns decreases, the correlation between the corresponding errors increases. We highlight two models under which this parameterization arises: a latent variable reduced-rank regression model and the errors-in-variables regression model. We propose a novel non-convex weighted residual sum of squares criterion which exploits this parameterization and admits a new class of penalized estimators. The optimization is solved with an accelerated proximal gradient de- scent algorithm. Our method is used to study the association between microRNA expression and cancer drug activity measured on the NCI-60 cell lines. An R package implementing our method, MCMVR, is available online.more » « less
-
The standard linear and logistic regression models assume that the response variables are independent, but share the same linear relationship to their corresponding vectors of covariates. The assumption that the response variables are independent is, however, too strong. In many applications, these responses are collected on nodes of a network, or some spatial or temporal domain, and are dependent. Examples abound in financial and meteorological applications, and dependencies naturally arise in social networks through peer effects. Regression with dependent responses has thus received a lot of attention in the Statistics and Economics literature, but there are no strong consistency results unless multiple independent samples of the vectors of dependent responses can be collected from these models. We present computationally and statistically efficient methods for linear and logistic regression models when the response variables are dependent on a network. Given one sample from a networked linear or logistic regression model and under mild assumptions, we prove strong consistency results for recovering the vector of coefficients and the strength of the dependencies, recovering the rates of standard regression under independent observations. We use projected gradient descent on the negative log-likelihood, or negative log-pseudolikelihood, and establish their strong convexity and consistency using concentration of measure for dependent random variables.more » « less
-
Summary Relational arrays represent measures of association between pairs of actors, often in varied contexts or over time. Trade flows between countries, financial transactions between individuals, contact frequencies between school children in classrooms and dynamic protein-protein interactions are all examples of relational arrays. Elements of a relational array are often modelled as a linear function of observable covariates. Uncertainty estimates for regression coefficient estimators, and ideally the coefficient estimators themselves, must account for dependence between elements of the array, e.g., relations involving the same actor. Existing estimators of standard errors that recognize such relational dependence rely on estimating extremely complex, heterogeneous structure across actors. This paper develops a new class of parsimonious coefficient and standard error estimators for regressions of relational arrays. We leverage an exchangeability assumption to derive standard error estimators that pool information across actors, and are substantially more accurate than existing estimators in a variety of settings. This exchangeability assumption is pervasive in network and array models in the statistics literature, but not previously considered when adjusting for dependence in a regression setting with relational data. We demonstrate improvements in inference theoretically, via a simulation study, and by analysis of a dataset involving international trade.more » « less
-
Many causal and structural effects depend on regressions. Examples include policy effects, average derivatives, regression decompositions, average treatment effects, causal mediation, and parameters of economic structural models. The regressions may be high‐dimensional, making machine learning useful. Plugging machine learners into identifying equations can lead to poor inference due to bias from regularization and/or model selection. This paper gives automatic debiasing for linear and nonlinear functions of regressions. The debiasing is automatic in using Lasso and the function of interest without the full form of the bias correction. The debiasing can be applied to any regression learner, including neural nets, random forests, Lasso, boosting, and other high‐dimensional methods. In addition to providing the bias correction, we give standard errors that are robust to misspecification, convergence rates for the bias correction, and primitive conditions for asymptotic inference for estimators of a variety of estimators of structural and causal effects. The automatic debiased machine learning is used to estimate the average treatment effect on the treated for the NSW job training data and to estimate demand elasticities from Nielsen scanner data while allowing preferences to be correlated with prices and income.more » « less
An official website of the United States government

