skip to main content


This content will become publicly available on June 30, 2024

Title: Design Parameters for Injectable Biopolymeric Hydrogels with Dynamic Covalent Chemistry Crosslinks
Abstract

Dynamic covalent chemistry (DCC) crosslinks can form hydrogels with tunable mechanical properties permissive to injectability and self‐healing. However, not all hydrogels with transient crosslinks are easily extrudable. For this reason, two additional design parameters must be considered when formulating DCC‐crosslinked hydrogels: 1) degree of functionalization (DoF) and 2) polymer molecular weight (MW). To investigate these parameters, hydrogels comprised of two recombinant biopolymers: 1) a hyaluronic acid (HA) modified with benzaldehyde and 2) an elastin‐like protein (ELP) modified with hydrazine (ELP‐HYD), are formulated. Several hydrogel families are synthesized with distinct HA MW and DoF while keeping the ELP‐HYD component constant. The resulting hydrogels have a range of stiffnesses,G′ ≈ 10–1000 Pa, and extrudability, which is attributed to the combined effects of DCC crosslinks and polymer entanglements. In general, lower MW formulations require lower forces for injectability, regardless of stiffness. Higher DoF formulations exhibit more rapid self‐healing. Gel extrusion through a cannula (2 m length, 0.25 mm diameter) demonstrates the potential for minimally invasive delivery for future biomedical applications. In summary, this work highlights additional parameters that influence the injectability and network formation of DCC‐crosslinked hydrogels and aims to guide future design of injectable hydrogels.

 
more » « less
Award ID(s):
2033302
NSF-PAR ID:
10431313
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell‐applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin‐like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine‐modified ELP (ELP‐HYD) and aldehyde/benzaldehyde‐modified polyethylene glycol (PEG‐ALD/PEG‐BZA). The reversible DCC crosslinks in ELP‐PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast‐relaxing or slow‐relaxing hydrogels with a range of stiffness (500–3300 Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two‐dimensional substrates, on which ECs exhibited greater cell spreading on fast‐relaxing hydrogels up through 3 days, compared with slow‐relaxing hydrogels at the same stiffness. In three‐dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast‐relaxing, low‐stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast‐relaxing, low‐stiffness hydrogel produced significantly more vascularization compared with the slow‐relaxing, low‐stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast‐relaxing, low‐stiffness hydrogels supported the highest capillary density in vivo.

     
    more » « less
  2. Dynamic bonds are a powerful approach to tailor the mechanical properties of elastomers and introduce shape-memory, self-healing, and recyclability. Among the library of dynamic crosslinks, electrostatic interactions among oppositely charged ions have been shown to enable tough and resilient elastomers and hydrogels. In this work, we investigate the mechanical properties of ionically crosslinked ethyl acrylate-based elastomers assembled from oppositely charged copolymers. Using both infrared and Raman spectroscopy, we confirm that ionic interactions are established among polymer chains. We find that the glass transition temperature of the complex is in between the two individual copolymers, while the complex demonstrates higher stiffness and more recovery, indicating that ionic bonds can strengthen and enhance recovery of these elastomers. We compare cycles to increasing strain levels at different strain rates, and hypothesize that at fast strain rates ionic bonds dynamically break and reform while entanglements do not have time to slip, and at slow strain rates ionic interactions are disrupted and these entanglements slip significantly. Further, we show that a higher ionic to neutral monomer ratio can increase the stiffness, but its effect on recovery is minimal. Finally, taking advantage of the versatility of acrylates, ethyl acrylate is replaced with the more hydrophilic 2-hydroxyethyl acrylate, and the latter is shown to exhibit better recovery and self-healing at a cost of stiffness and strength. The design principles uncovered for these easy-to-manufacture polyelectrolyte complex-inspired bulk materials can be broadly applied to tailor elastomer stiffness, strength, inelastic recovery, and self-healing for various applications. 
    more » « less
  3. Abstract

    Injectable hydrogels are increasingly explored for the delivery of cells to tissue. These materials exhibit both liquid‐like properties, protecting cells from mechanical stress during injection, and solid‐like properties, providing a stable 3D engraftment niche. Many strategies for modulating injectable hydrogels tune liquid‐ and solid‐like material properties simultaneously, such that formulation changes designed to improve injectability can reduce stability at the delivery site. The ability to independently tune liquid‐ and solid‐like properties would greatly facilitate formulation development. Here, such a strategy is presented in which cells are ensconced in the pores between microscopic granular hyaluronic acid (HA) hydrogels (microgels), where elasticity is tuned with static covalent intra‐microgel crosslinks and flowability with mechanosensitive adamantane‐cyclodextrin (AC) inter‐microgel crosslinks. Using the same AC‐free microgels as a 3D printing support bath, the location of each cell is preserved as it exits the needle, allowing identification of the mechanism driving mechanical trauma‐induced cell death. The microgel AC concentration is varied to find the threshold from microgel yielding‐ to AC interaction‐dominated injectability, and this threshold is exploited to fabricate a microgel with better injection‐protecting performance. This delivery strategy, and the balance between intra‐ and inter‐microgel properties it reveals, may facilitate the development of new cell injection formulations.

     
    more » « less
  4. Shear‐thinning, self‐healing hydrogels are promising vehicles for therapeutic cargo delivery due to their ability to be injected using minimally invasive surgical procedures. An injectable hydrogel using a novel combination of dynamic covalent crosslinking with thermoresponsive engineered proteins is presented. Ex situ at room temperature, rapid gelation occurs through dynamic covalent hydrazone bonds by simply mixing two components: hydrazine‐modified elastin‐like protein (ELP) and aldehyde‐modified hyaluronic acid. This hydrogel provides significant mechanical protection to encapsulated human mesenchymal stem cells during syringe needle injection and rapidly recovers after injection to retain the cells homogeneously within a 3D environment. In situ, the ELP undergoes a thermal phase transition, as confirmed by coherent anti‐Stokes Raman scattering microscopy observation of dense ELP thermal aggregates. The formation of the secondary network reinforces the hydrogel and results in a tenfold slower erosion rate compared to a control hydrogel without secondary thermal crosslinking. This improved structural integrity enables cell culture for three weeks postinjection, and encapsulated cells maintain their ability to differentiate into multiple lineages, including chondrogenic, adipogenic, and osteogenic cell types. Together, these data demonstrate the promising potential of ELP–HA hydrogels for injectable stem cell transplantation and tissue regeneration.

     
    more » « less
  5. Abstract

    Mechanically tunable hydrogels are attractive platforms for 3D cell culture, as hydrogel stiffness plays an important role in cell behavior. Traditionally, hydrogel stiffness has been controlled through altering either the polymer concentration or the stoichiometry between crosslinker reactive groups. Here, an alternative strategy based upon tuning the hydrophilicity of an elastin‐like protein (ELP) is presented. ELPs undergo a phase transition that leads to protein aggregation at increasing temperatures. It is hypothesized that increasing this transition temperature through bioconjugation with azide‐containing molecules of increasing hydrophilicity will allow direct control of the resulting gel stiffness by making the crosslinking groups more accessible. These azide‐modified ELPs are crosslinked into hydrogels with bicyclononyne‐modified hyaluronic acid (HA‐BCN) using bioorthogonal, click chemistry, resulting in hydrogels with tunable storage moduli (100–1000 Pa). Human mesenchymal stromal cells (hMSCs), human umbilical vein endothelial cells (HUVECs), and human neural progenitor cells (hNPCs) are all observed to alter their cell morphology when encapsulated within hydrogels of varying stiffness. Taken together, the use of protein hydrophilicity as a lever to tune hydrogel mechanical properties is demonstrated. These hydrogels have tunable moduli over a stiffness range relevant to soft tissues, support the viability of encapsulated cells, and modify cell spreading as a consequence of gel stiffness.

     
    more » « less