skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Highly stretchable ionically crosslinked acrylate elastomers inspired by polyelectrolyte complexes
Dynamic bonds are a powerful approach to tailor the mechanical properties of elastomers and introduce shape-memory, self-healing, and recyclability. Among the library of dynamic crosslinks, electrostatic interactions among oppositely charged ions have been shown to enable tough and resilient elastomers and hydrogels. In this work, we investigate the mechanical properties of ionically crosslinked ethyl acrylate-based elastomers assembled from oppositely charged copolymers. Using both infrared and Raman spectroscopy, we confirm that ionic interactions are established among polymer chains. We find that the glass transition temperature of the complex is in between the two individual copolymers, while the complex demonstrates higher stiffness and more recovery, indicating that ionic bonds can strengthen and enhance recovery of these elastomers. We compare cycles to increasing strain levels at different strain rates, and hypothesize that at fast strain rates ionic bonds dynamically break and reform while entanglements do not have time to slip, and at slow strain rates ionic interactions are disrupted and these entanglements slip significantly. Further, we show that a higher ionic to neutral monomer ratio can increase the stiffness, but its effect on recovery is minimal. Finally, taking advantage of the versatility of acrylates, ethyl acrylate is replaced with the more hydrophilic 2-hydroxyethyl acrylate, and the latter is shown to exhibit better recovery and self-healing at a cost of stiffness and strength. The design principles uncovered for these easy-to-manufacture polyelectrolyte complex-inspired bulk materials can be broadly applied to tailor elastomer stiffness, strength, inelastic recovery, and self-healing for various applications.  more » « less
Award ID(s):
1719875
PAR ID:
10411558
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
18
Issue:
39
ISSN:
1744-683X
Page Range / eLocation ID:
7679 to 7688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-healing materials are those that can recover from physical or chemical damage autonomously. To be applied in underwater applications such as water treatment, self-healing materials need to demonstrate sufficient healing ability in complex water matrices. Herein, we investigated how monovalent (NaCl) and divalent (MgSO4) ions at concentrations relevant to brackish and seawater salinity impact the self- healing efficiency of a model 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and N,N′-methylenebis(acrylamide) (MBA) hydrogel. It has been assumed that divalent ions would form ionic bonds and act as crosslinkers between viable functional groups (negatively charged oxygens, etc.). However, our results suggest that this assumption needs to be reconsidered. Under concentrations relevant to seawater (35 g/L), magnesium ions hindered self-healing efficiency by ∼30% as measured by recovery of ultimate tensile (UT) strength. On the other hand, they improved self-healing efficiency by ∼100% as measured by recovery ofUT strain. A similar trend was also observed for sodium ions. The chemical crosslinker ratio when doubled did not impact self-healing efficiency. These results challenge the assumption that divalent 
    more » « less
  2. Abstract Electrically accelerated self‐healable poly(ionic liquids) copolymers that exhibit resistor‐capacitor (RC) circuit properties are developed. At low alternating current (AC) frequencies these materials behave as a resistor (R), whereas at higher frequencies as a capacitor (C). These properties are attributed to a combination of dipolar and electrostatic interactions in (1‐[(2‐methacryloyloxy)ethyl]‐3‐butylimidazolium bis(trifluoromethyl‐sulfonyl)imide) copolymerized with methyl methacrylate (MMA) monomers to form p(MEBIm‐TSFI/MMA)] copolymers. When the monomer molar ratio (MEBIm‐TSFI:MMA) is 40/60, these copolymers are capable of undergoing multiple damage‐repair cycles and self‐healing is accelerated by the application of alternating 1.0–4.0 V electric field (EF). Self‐healing in the absence of EFs is facilitated by van der Waals (vdW) interactions, but the application of AC EF induces back and forth movement of charges against the opposing force that result in dithering of electrostatic dipoles giving rise to interchain physical crosslinks. Electrostatic inter‐ and intrachain interactions facilitated by copolymerization of ionic liquid monomers with typically dielectric acrylic‐based monomers result in enhanced cohesive energy densities that accelerate the recovery of vdW forces facilitating self‐healing. Incorporating ionic liquids into commodity polymers offers promising uses as green conducting solid polyelectrolytes in self‐healable energy storage, energy‐harvesting devices, and many other applications. 
    more » « less
  3. Self-healing polymers often have a trade-off between healing efficiency and mechanical stiffness. Stiff polymers that sacrifice their chain mobility are slow to repair upon mechanical failure. We herein report adaptable polymer films with dynamically moisture-controlled mechanical and optical properties, therefore having tunable self-healing efficiency. The design of the polymer film is based on the coordination of europium (Eu) with dipicolylamine (DPA)-containing random copolymers of poly( n -butyl acrylate- co -2-hydroxy-3-dipicolylamino methacrylate) (P( n BA- co -GMADPA)). The Eu–DPA complexation results in the formation of mechanically robust polymer films. The coordination of Eu–DPA has proven to be moisture-switchable given the preferential coordination of lanthanide metals to O over N, using nuclear magnetic resonance and fluorescence spectroscopy. Water competing with DPA to bind Eu 3+ ions can weaken the cross-linking networks formed by Eu–DPA coordination, leading to the increase of chain mobility. The in situ dynamic mechanical analysis and ex situ rheological studies confirm that the viscofluid and the elastic solid states of Eu-polymers are switchable by moisture. Water speeds up the self-healing of the polymer film by roughly 100 times; while it can be removed after healing to recover the original mechanical stiffness of polymers. 
    more » « less
  4. Abstract Although dipolar forces between copolymer chains are relatively weak, they result in ubiquitous inter‐ and/or intramolecular interactions which are particularly critical in achieving the mechanical integrity of polymeric materials. In this study, a route is developed to obtain self‐healable properties in thermoplastic copolymers that rely on noncovalent dipolar interactions present in essentially all macromolecules and particularly fluorine‐containing copolymers. The combination of dipolar interactions between C─F and C═O bonds as well as CH2/CH3entities facilitates self‐healing without external intervention. The presence of dipole‐dipole, dipole‐induced dipole, and induced‐dipole induced dipole interactions leads to a viscoelastic response that controls macroscopic autonomous multicycle self‐healing of fluorinated copolymers under ambient conditions. Energetically favorable dipolar forces attributed to monomer sequence and monomer molar ratios induces desirable copolymer tacticities, enabling entropic energy recovery stored during mechanical damage. The use of dipolar forces instead of chemical or physical modifications not only eliminates additional alternations enabling multiple damage‐repair cycles but also provides further opportunity for designing self‐healable commodity thermoplastics. These materials may offer numerous applications, ranging from the use in electronics, ion batteries, H2fuel dispense hoses to self‐healable pet toys, packaging, paints and coatings, and many others. 
    more » « less
  5. Abstract Commodity aliphatic and aromatic acrylic‐based copolymers self‐heal due to ubiquitouskey‐and‐lock,ring‐and‐lock, andfluorophilic‐σ‐lockvan der Waals (vdW) interactions. However, the role of these interactions in the presence of covalently copolymerized ionic liquid (IL) is not known. This study is driven by the hypothesis that covalently incorporated cation–anion pairs to form poly(ionic liquid) copolymers (PILCs) can perturb inter‐ or intra‐chain vdW interactions reflected in mechanical and electrical responses. To test this hypothesis, we synthesized a series of PILCs comprising of pentafluorostyrene (PFS) and imidazolium‐based IL monomers with variable‐length aliphatic tails (methyl and butyl). Using a combination of 2D1H‐1H and19F ‐19F NOESY NMR and FTIR measurements supplemented by molecular dynamic (MD) simulations, these studies demonstrate that preferentially alternating/random PILCs topologies facilitate self‐healing. The introduction of cation–anion moieties modifies thefluorophilic‐σ‐lockinteractions and, along with longer aliphatic tails ─(CH2)3CH3covalently attached to the imidazolium cation, enhances cation‐anion mobility, thus faster recovery from mechanical damage occurs. These findings underline how precise control over dipolar and ionic interactions through copolymer composition enables self‐healing in PILCs. These insights may open pathways for designing sustainable, mechanically resilient materials for applications in energy storage and energy harvesting. 
    more » « less