The refractory metal iridium has many applications in high performance optical devices due to its high reflectivity into X-ray frequencies, low oxidation rate, and high melting point. Depositing Ir via magnetron sputtering produces high quality thin films, but the chamber pressure and sputter conditions can change Ir film microstructure on the nanoscale. Film microstructure is commonly examined through microscopy of film cross-sections, which is both a destructive characterization method and time consuming. In this work, we have utilized a non-destructive characterization technique, spectroscopic ellipsometry, to correlate the optical properties of the metal films with their structural morphologies, enabling large-scale inspection of optical components or the ability to customize the metal refractive index for the application at hand. The optical properties of Ir thin films deposited at chamber pressures from 10 mTorr to 25 mTorr are reported and compared to microscopy and resistivity results. The measurements were conducted with films deposited both on a bare wafer and on a titanium sublayer.
Due to its refractory properties and higher oxidation resistance, iridium (Ir) exhibits great potential for applications such as thermophotovoltaic emitters or contamination sensing. However, the lack of its temperature-dependent optical data prevents accurate modeling of Ir-based optical devices operating at higher temperatures. In this work, refractive indices of as-deposited and annealed Ir films, sputter-deposited, are characterized at between room temperature and 550°C over 300 nm to 15 µm of wavelength. The extinction coefficients of both as-deposited and annealed Ir films tend to decrease as temperature increases, with the exception of as-deposited Ir at 550°C due to significant grain growth. Under 530°C, optical constants of as-deposited Ir are less sensitive to temperature than those of annealed Ir. These characteristics of Ir films are correlated with their microstructural changes.
more » « less- Award ID(s):
- 2120581
- NSF-PAR ID:
- 10431332
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optical Materials Express
- Volume:
- 13
- Issue:
- 8
- ISSN:
- 2159-3930
- Format(s):
- Medium: X Size: Article No. 2227
- Size(s):
- Article No. 2227
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Chemical solution deposition was used to deposit epitaxial Ba
x Sr(1−x )TiO3thin films on SrTiO3template layers on Si(001) forx = 1.0, 0.7, 0.5, 0.3, and 0.0. Effective Pockels coefficients were determined as a function of film composition both for as‐deposited films (crystallized at 600°C) and for the films after annealing at 750°C for 10 hours. Pockels response decreased monotonically with decreasing Ba content and coefficients were higher for annealed films, reaching 89 ± 3 pm/V for annealed BaTiO3. These results are contextualized with the aid of X‐ray diffraction and high‐resolution transmission microscopy, which illuminated the crystallinity and defect nature of the films. -
Haasch, Richard ; Graham, Dan ; Podraza, Nikolas ; Shard, Alexander (Ed.)
Spectroscopic ellipsometry and ultraviolet-visible (UV-VIS) spectrometry were utilized to study the optical properties of ferroelectric lead lanthanum zirconate titanate (PLZT) films. These films were deposited on platinized silicon [Si(100)/ SiO2/TiO2/Pt(111)] substrates using the chemical solution deposition method. Films were annealed at two different temperatures (650 and 750 °C) using rapid thermal annealing. Shimadzu UV-1800 UV-VIS spectrophotometer with a resolution of 1 nm was used to measure the reflectance data in the spectral range of 300–1000 nm with a step size of 1 nm. The bandgap values were determined from the reflectance spectra using appropriate equations. A J.A. Woollam RC2 small spot spectroscopic ellipsometer was used to obtain the change in amplitude (Ψ) and phase (Δ) of polarized light upon reflection from the film surface. The spectra were recorded in the wavelength range of 210–1500 nm at an incident angle of 65°. Refractive index (n) and extinction coefficient (k) were obtained by fitting the spectra (Ψ, Δ) with the appropriate models. No significant changes were observed in the optical constants of PLZT films annealed at 650 and 750 °C. The optical transparency and the strong absorption in the ultraviolet (UV) region of PLZT films make them an attractive material for optoelectronic and UV sensing applications.
-
Low mechanical loss and high refractive index in amorphous Ta2O5 films grown by magnetron sputteringThe ability to observe astronomical events through the detection of gravitational waves relies on the quality of multilayer coatings used on the optical mirrors of interferometers. Amorphous Ta2O5 (including TiO2:Ta2O5) currently limits detector sensitivity due to high mechanical loss. In this paper, mechanical loss measured at both cryogenic and room temperatures of amorphous Ta2O5 films grown by magnetron sputtering and annealed in air at 500 ◦C is shown to decrease for elevated growth temperature. Films grown at 310 ◦C and annealed yield a mechanical loss of 3.1×10−4 at room temperature, the lowest value reported for pure amorphous Ta2O5 grown by magnetron sputtering to date, and comparable to the lowest values obtained for films grown by ion beam sputtering. Additionally, the refractive index n increases 6% for elevated growth temperature, which could lead to improved sensitivity of gravitational-wave detectors by allowing a thickness reduction in the mirrors’ coatings. Structural characterization suggests that the observed mechanical loss reduction in amorphous Ta2O5 films with increasing growth temperature correlates with a reduction in the coordination number between oxygen and tantalum atoms, consistent with TaOx polyhedra with increased corner-sharing and reduced edge- and facesharing structures.more » « less
-
Two distinct ultra-thin Ge1−xSnx (x ≤ 0.1) epilayers were deposited on (001) Si substrates at 457 and 313 °C through remote plasma-enhanced chemical vapor deposition. These films are considered potential initiation layers for synthesizing thick epitaxial GeSn films. The GeSn film deposited at 313 °C has a thickness of 10 nm and exhibits a highly epitaxial continuous structure with its lattice being compressed along the interface plane to coherently match Si without mismatch dislocations. The GeSn film deposited at 457 °C exhibits a discrete epitaxial island-like morphology with a peak height of ∼30 nm and full-width half maximum (FWHM) varying from 20 to 100 nm. GeSn islands with an FWHM smaller than 20 nm are defect free, whereas those exceeding 25 nm encompass nanotwins and/or stacking faults. The GeSn islands form two-dimensional modulated superlattice structures at the interface with Si. The GeSn film deposited at 457 °C possesses a lower Sn content compared to the one deposited at lower temperature. The potential impact of using these two distinct ultra-thin layers as initiation layers for the direct growth of thicker GeSn epitaxial films on (001) Si substrates is discussed.