skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of nanoparticle loading and magnetic field application on the thermodynamic, optical, and rheological behavior of thermoresponsive polymer solutions
Abstract Although processing via external stimuli is a promising technique to tune the structure and properties of polymeric materials, the impact of magnetic fields on phase transitions in thermoresponsive polymer solutions is not well‐understood. As nanoparticle (NP) addition is also known to impact these thermodynamic and optical properties, synergistic effects from combining magnetic fields with NP incorporation provide a novel route for tuning material properties. Here, the thermodynamic, optical, and rheological properties of aqueous poly(N‐isopropyl acrylamide) (PNIPAM) solutions are examined in the presence of hydrophilic silica NPs and magnetic fields, individually and jointly, via Fourier‐transform infrared spectroscopy (FTIR), magneto‐turbidimetry, differential scanning calorimetry (DSC), and magneto‐rheology. While NPs and magnetic fields both reduce the phase separation energy barrier and lower optical transition temperatures by altering hydrogen bonding (H‐bonding), infrared spectra demonstrate that the mechanism by which these changes occur is distinct. Magnetic fields primarily alter solvent polarization while NPs provide PNIPAM–NP H‐bonding sites. Combining NP addition with field application uniquely alters the solution environment and results in field‐dependent rheological behavior that is unseen in polymer‐only solutions. These investigations provide fundamental understanding on the interplay of magnetic fields and NP addition on PNIPAM thermoresponsivity which can be harnessed for increasingly complex stimuli‐responsive materials.  more » « less
Award ID(s):
2011401 2122178
PAR ID:
10431341
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Vinyl and Additive Technology
Volume:
29
Issue:
4
ISSN:
1083-5601
Format(s):
Medium: X Size: p. 795-812
Size(s):
p. 795-812
Sponsoring Org:
National Science Foundation
More Like this
  1. A facile and novel processable method to synthesize the Ni nanoparticles (Ni NPs) by tailoring their size in the matrix of the silicon oxycarbide (SiOC) ceramic system is reported. This method is based on polymer‐derived ceramics (PDCs), instead of the conventional powder route. The specific structural characteristics and magnetic properties of the various Ni NPs/SiOC composites as a function of carbon content are systematically investigated. The magnetic properties are experimentally investigated as a function of NP size and measurement temperature. It is demonstrated that the change in the size of Ni NPs (average from ≈4 to ≈ 19 nm) determines the magnetic nature of superparamagnetism. Zero‐field‐cooled (ZFC) and field‐cooled (FC) magnetization studies under magnetic fields of 100 Oe are performed. The saturatedMversusH(M–H) loops (saturation magnetization) increase and the coercivity decreases with the size reduction of Ni NPs. It is an indicator of the presence of superparamagnetic behavior and single‐domain NP for ceramic materials. 
    more » « less
  2. Abstract Thermoresponsive nanoparticles (NPs) represent an important hybrid material comprising functional NPs with temperature‐sensitive polymer ligands. Strikingly, significant discrepancies in optical and catalytic properties of thermoresponsive noble‐metal NPs have been reported, and have yet to be unraveled. Reported herein is the crafting of Au NPs, intimately and permanently ligated by thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM), in situ using a starlike block copolymer nanoreactor as model system to resolve the paradox noted above. As temperature rises, plasmonic absorption of PNIPAM‐capped Au NPs red‐shifts with increased intensity in the absence of free linear PNIPAM, whereas a greater red‐shift with decreased intensity occurs in the presence of deliberately introduced linear PNIPAM. Remarkably, the absence or addition of free linear PNIPAM also accounts for non‐monotonic or switchable on/off catalytic performance, respectively, of PNIPAM‐capped Au NPs. 
    more » « less
  3. Polymer solution processability in extensional-flow dominated operations is strongly influenced by polymer conformation and solution phase behavior. Cosolvent addition can be used to tailor polymer conformation and solution phase behavior to yield formulations that are amenable to processes such as spraying and atomization, coating, and fiber spinning. The addition of N,N-dimethylformamide (DMF) to aqueous poly(N-isopropylacrylamide) (PNIPAM) solutions induces unique phase behavior and microstructure formation, yet the effects on solution processability have remained unexplored. In this work, the effect of DMF cosolvent content on the rheology (both shear and extensional) and microstructure of PNIPAM solutions is investigated. While all examined PNIPAM solutions exhibit nearly Newtonian steady shear behavior regardless of DMF content, the same solutions exhibit varying degrees of extensibility. Surprisingly, the extensional relaxation time increases by more than twenty-fold with increasing DMF content in the water-rich regime. In the DMF-rich regime, however, solution extensibility dramatically decreases. Interestingly, this unique variation in extensional flow behavior does not scale as expected based on changes in the measured intrinsic viscosity and radius of gyration. Instead, a mechanism is proposed that relates the extensional flow behavior to the solution microstructure, which is found to vary with DMF content in light scattering measurements. In the water-rich regime, DMF molecules are proposed to bridge PNIPAM chains via hydrogen bonding and hydrophobic interactions, resulting in physically crosslinked aggregates. In extensional flows, these aggregates behave like a polymer with higher apparent molecular weight, increasing the extensional relaxation time. In the DMF-rich regime, non-bridging DMF molecules increasingly solvate individual PNIPAM chains; consequently, more individual chains are stretched in extensional flows, leading to a reduction in the extensional relaxation time. These findings demonstrate that interactions between components in these ternary systems have unexpected but significant implications in solution extensional flow behavior. Additionally, in the case of PNIPAM/DMF/water, the processability of polymer-containing formulations can be modulated for spraying or for fiber spinning applications just by varying cosolvent (DMF) content. 
    more » « less
  4. Abstract Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C. It enables the spontaneous and instant formation of physical crosslinks within PNIPAM chains at room temperature, thus allowing the PNIPAM solution to solidify upon contact with a salt solution. The PNIPAM solutions are extrudable through needles and can immediately solidify by salt ions, preserving printed structures, without rheological modifiers, chemical crosslinkers, and additional post-processing steps/equipment. The reversible physical crosslinking and de-crosslinking of the polymer through the salting-out effect demonstrate the recyclability of the polymeric ink. This printing approach extends to various PNIPAM-based composite solutions incorporating functional materials or other polymers, which offers great potential for developing water-soluble disposable electronic circuits, carriers for delivering small materials, and smart actuators. 
    more » « less
  5. Abstract Ionic liquids (ILs) have emerged as promising biomaterials for enhancing drug delivery by functionalizing polymeric nanoparticles (NPs). Despite the biocompatibility and biofunctionalization they confer upon the NPs, little is understood regarding the degree in which non‐covalent interactions, particularly hydrogen bonding and electrostatic interactions, govern IL‐NP supramolecular assembly. Herein, we use salt (0‐1 M sodium sulfate) and acid (0.25 M hydrochloric acid at pH 4.8) titrations to disrupt IL‐functionalized nanoassembly for four different polymeric platforms during synthesis. Through quantitative1H‐nuclear magnetic resonance spectroscopy and dynamic light scattering, we demonstrate that the driving force of choline trans‐2‐hexenoate (CA2HA 1:1) IL assembly varies with either hydrogen bonding or electrostatics dominating, depending on the structure of the polymeric platform. In particular, the covalently bound or branched 50:50 block co‐polymer systems (diblock PEG‐PLGA [DPP] and polycaprolactone [PCl]‐poly[amidoamine] amine‐based linear‐dendritic block co‐polymer) are predominantly affected by hydrogen bonding disruption. In contrast, a purely linear block co‐polymer system (carboxylic acid terminated poly[lactic‐co‐glycolic acid]) necessitates both electrostatics and hydrogen bonding to assemble with IL and a two‐component electrostatically bound system (electrostatic PEG‐PLGA [EPP]) favors hydrogen‐bonding with electrostatics serving as a secondary role. 
    more » « less