skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate-controlled submarine landslides on the Antarctic continental margin
Abstract Antarctica’s continental margins pose an unknown submarine landslide-generated tsunami risk to Southern Hemisphere populations and infrastructure. Understanding the factors driving slope failure is essential to assessing future geohazards. Here, we present a multidisciplinary study of a major submarine landslide complex along the eastern Ross Sea continental slope (Antarctica) that identifies preconditioning factors and failure mechanisms. Weak layers, identified beneath three submarine landslides, consist of distinct packages of interbedded Miocene- to Pliocene-age diatom oozes and glaciomarine diamicts. The observed lithological differences, which arise from glacial to interglacial variations in biological productivity, ice proximity, and ocean circulation, caused changes in sediment deposition that inherently preconditioned slope failure. These recurrent Antarctic submarine landslides were likely triggered by seismicity associated with glacioisostatic readjustment, leading to failure within the preconditioned weak layers. Ongoing climate warming and ice retreat may increase regional glacioisostatic seismicity, triggering Antarctic submarine landslides.  more » « less
Award ID(s):
1947558 1947646 1947657
PAR ID:
10431458
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During December 2022–January 2023, nine atmospheric rivers (ARs) struck California consecutively, causing catastrophic flooding and 600+ landslides. The extensive footprints of landslide‐triggering storms and their diverse hydrometeorological forcings highlight the urgent need to incorporate regional‐scale hydrometeorology into landslide research. Here, using a meteorologically‐informed hydrologic model, we simulate the time‐evolving water budget during the nine‐AR event and identify hydrometeorological conditions that contributed to widespread landslide occurrences across California. Our analysis reveals that 89% of observed landslides occurred under excessively wet conditions, driven by precipitation exceeding the capacities of infiltration, storage, evapotranspiration, and soil drainage. Using K‐means clustering, we identify three distinct hydrometeorological pathways that increased landslide potential: intense precipitation‐induced runoff (∼32% of reported landslides), rain on pre‐wetted soils (∼53%), and snowmelt and soil ice thawing (∼15%). Our findings highlight the importance of constraining the compounding factors that influence slope stability over spatial scales consistent with landslide‐triggering weather systems. 
    more » « less
  2. Abstract The withdrawal of glaciers in mountainous systems exposes over‐steepened slopes previously sculpted by ice. This debuttressing can directly trigger mass movements or leave slopes susceptible to them by other drivers, including seismogenic shaking and changing climate conditions. These systems may pose hazards long after deglaciation. Here, we investigate the drivers of slope failure for landslides at the northern entrance to Yellowstone National Park, a critical conduit traversed by ~1 million visitors each year. Through field mapping and analyses of LiDAR data, we quantify the spatial and temporal relationships between eight adjacent slides. Stratigraphic relationships and surface roughness analyses suggest initial emplacement 13–11.5 ka, after a significant delay from Deckard Flats glacial retreat (15.1 ± 1.2 ka). Thus, rapid glacial debuttressing was not the direct trigger of slope failure, though the resultant change in stress regime likely had a preparatory influence. We posit that the timing of failure was associated with (1) a period of enhanced moisture and seismicity in the late Pleistocene and (2) altered stress regimes associated with ice retreat. Historical archives and cross‐cutting relationships indicate portions of some ancient slides were reactivated; these areas are morphologically distinguishable from other slide surfaces, with mean topographic roughness 2 times that of non‐active slides. Stream power analysis and archival records indicate Holocene incision of the Gardner River and human disturbances are largely responsible for modern reactivations. Our findings highlight the importance of combining archival records with stratigraphic, field and remote sensing approaches to understanding landslide timing, risk, and drivers in post‐glacial environments. This study also provides a valuable baseline for geomorphic change in the Yellowstone system, where a 2022 flood incised streams, damaged infrastructure and further reactivated landslide slopes. 
    more » « less
  3. Atmospheric and oceanic warming over the past century have driven rapid glacier thinning and retreat, destabilizing hillslopes and increasing the frequency of landslides. The impact of these landslides on glacier dynamics and resultant secondary landslide hazards are not fully understood. We investigated how a 262 ± 77 × 106 m3 landslide affected the flow of Amalia Glacier, Chilean Patagonia. Despite being one of the largest recorded landslides in a glaciated region, it emplaced little debris onto the glacier surface. Instead, it left a series of landslide-perpendicular ridges, landslide-parallel fractures, and an apron of ice debris—with blocks as much as 25 m across. Our observations suggest that a deep-seated failure of the mountainside impacted the glacier flank, propagating brittle deformation through the ice and emplacing the bulk of the rock mass below the glacier. The landslide triggered a brief downglacier acceleration of Amalia Glacier followed by a slowdown of as much as 60% of the pre-landslide speed and increased suspended-sediment concentrations in the fjord. These results highlight that landslides may induce widespread and long-lasting disruptions to glacier dynamics. 
    more » « less
  4. null (Ed.)
    Abstract Faulting and earthquakes occur extensively along the flanks of the East African Rift System, including an offshore branch in the western Indian Ocean, resulting in remobilization of sediment in the form of landslides. To date, constraints on the occurrence of submarine landslides at margin scale are lacking, leaving unanswered a link between rifting and slope instability. Here, we show the first overview of landslide deposits in the post-Eocene stratigraphy of the Tanzania margin and we present the discovery of one of the biggest landslides on Earth: the Mafia mega-slide. The emplacement of multiple landslides, including the Mafia mega-slide, during the early-mid Miocene is coeval with cratonic rifting in Tanzania, indicating that plateau uplift and rifting in East Africa triggered large and potentially tsunamigenic landslides likely through earthquake activity and enhanced sediment supply. This study is a first step to evaluate the risk associated with submarine landslides in the region. 
    more » « less
  5. Abstract Submarine landslides shape continental margins, transfer massive amounts of sediment downslope, and can generate deadly and destructive tsunamis. Submarine landslides are common globally, yet constraining hazard potential of future events is limited by a short historical record and a wide range of possible slide dynamics. We test a novel approach to investigate slide dynamics using properties of the deformation zone induced by a large submarine landslide along the Cascadia margin, offshore Oregon. We use a simple model of a line load on a poroelastic half space to show the deformation zone size required rapid transport and deceleration. We argue that the slide moved at high speeds, aided by low dynamic frictional resistance, suggesting this event could have generated a tsunami. This method is applicable where slide‐induced impact zones are observed. 
    more » « less