The structure of sarcomeres imposes limits to the capacity of striated muscle to change length and produce force, with z-disc and myosin filament interactions constraining shortening. Conversely, supercontracting muscles, hitherto only known among vertebrates in the tongue retractor muscle (m. hyoglossus) of chameleons, have perforated z-discs that allow myosin filaments to extend through them into adjacent sarcomeres, permitting continued shortening and force development. Additional hyolingual muscles in chameleons undergo extreme length changes during feeding as well and may benefit from supercontractile properties. We compared length–tension relationship data and transmission electron microscopy images from four chameleon muscles to test for the presence of additional supercontracting muscle. We document the second known example of a supercontracting muscle among vertebrates (the m. sternohyoideus superficialis) and show that the m. sternohyoideus profundus exhibits functional convergence with supercontracting muscles by increasing the range of muscle lengths over which it can exert force through the exploitation of sarcomere length non-uniformity across its muscle fibres. Additionally, we show that chameleon supercontracting muscles may share common contractile and structural properties due to a common origin from occipital somites. These results provide important insights into the developmental and evolutionary patterns associated with supercontracting muscle and extreme muscle elongation.
more »
« less
One size does not fit all: diversity of length–force properties of obliquely striated muscles
ABSTRACT Obliquely striated muscles occur in 17+ phyla, likely evolving repeatedly, yet the implications of oblique striation for muscle function are unknown. Contrary to the belief that oblique striation allows high force output over extraordinary length ranges (i.e. superelongation), recent work suggests diversity in operating length ranges and length–force relationships. We hypothesize oblique striation evolved to increase length–force relationship flexibility. We predict that superelongation is not a general characteristic of obliquely striated muscles and instead that length–force relationships vary with operating length range. To test these predictions, we measured length–force relationships of five obliquely striated muscles from inshore longfin squid, Doryteuthis pealeii: tentacle, funnel retractor and head retractor longitudinal fibers, and arm and fin transverse fibers. Consistent with superelongation, the tentacle length–force relationship had a long descending limb, whereas all others exhibited limited descending limbs. The ascending limb at 0.6P0 was significantly broader (P<0.001) for the tentacle length–force relationship (0.43±0.04L0; where L0 is the preparation length that produced peak isometric stress, P0) than for the arm (0.29±0.03L0), head retractor (0.24±0.06L0), fin (0.20±0.04L0) and funnel retractor (0.27±0.03L0). The fin's narrow ascending limb differed significantly from those of the arm (P=0.004) and funnel retractor (P=0.012). We further characterized the tentacle preparation's maximum isometric stress (315±78 kPa), maximum unloaded shortening velocity (2.97±0.55L0 s−1) and ultrastructural traits (compared with the arm), which may explain its broader length–force relationship. Comparison of obliquely striated muscles across taxa revealed length–force relationship diversity, with only two species exhibiting superelongation.
more »
« less
- PAR ID:
- 10431466
- Publisher / Repository:
- The Company of Biologists Ltd
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- Volume:
- 226
- Issue:
- Suppl_1
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The isometric force–length (F–L) and isotonic force–velocity (F–V) relationships characterize the contractile properties of skeletal muscle under controlled conditions, yet it remains unclear how these properties relate to in vivo muscle function. Here, we map the in situ F–L and F–V characteristics of guinea fowl (Numida meleagris) lateral gastrocnemius (LG) to the in vivo operating range during walking and running. We test the hypothesis that muscle fascicles operate on the F–L plateau, near the optimal length for force (L0) and near velocities that maximize power output (Vopt) during walking and running. We found that in vivo LG velocities are consistent with optimizing power during work production, and economy of force at higher loads. However, LG does not operate near L0 at higher loads. LG length was near L0 at the time of electromyography (EMG) onset but shortened rapidly such that force development during stance occurred on the ascending limb of the F–L curve, around 0.8L0. Shortening across L0 in late swing might optimize potential for rapid force development near the swing–stance transition, providing resistance to unexpected perturbations that require rapid force development. We also found evidence of in vivo passive force rise in late swing, without EMG activity, at lengths where in situ passive force is zero, suggesting that dynamic viscoelastic effects contribute to in vivo force development. Comparison of in vivo operating ranges with F–L and F–V properties suggests the need for new approaches to characterize muscle properties in controlled conditions that more closely resemble in vivo dynamics.more » « less
-
Abstract The force-generating capacity of muscle depends upon many factors including the actin-myosin filament overlap due to the relative length of the sarcomere. Consequently, the force output of a muscle may vary throughout its range of motion, and the body posture allowing maximum force generation may differ even in otherwise similar species. We hypothesized that corn snakes would show an ontogenetic shift in sarcomere length range from being centered on the plateau of the length-tension curve in small individuals to being on the descending limb in adults. Sarcomere lengths across the plateau would be advantageous for locomotion, while the descending limb would be advantageous for constriction due to the increase in force as the coil tightens around the prey. To test this hypothesis, we collected sarcomere lengths from freshly euthanized corn snakes, preserving segments in straight and maximally curved postures, and quantifying sarcomere length via light microscopy. We dissected 7 muscles (spinalis, semispinalis, multifidus, longissimus dorsi, iliocostalis (dorsal and ventral), and levator costae) in an ontogenetic series of corn snakes (mass = 80–335 g) at multiple regions along the body (anterior, middle, and posterior). Our data shows all of the muscles analyzed are on the descending limb of the length-tension curve at rest across all masses, regions, and muscles analyzed, with muscles shortening onto or past the plateau when flexed. While these results are consistent with being advantageous for constriction at all sizes, there could also be unknown benefits of this sarcomere arrangement for locomotion or striking.more » « less
-
Isometric force generation and kinematic reaching in the upper extremity has been found to be represented by a limited number of muscle synergies, even across task-specific variations. However, the extent of the generalizability of muscle synergies between these two motor tasks within the arm workspace remains unknown. In this study, we recorded electromyographic (EMG) signals from 13 different arm, shoulder, and back muscles of ten healthy individuals while they performed isometric and kinematic center-out target matches to one of 12 equidistant directional targets in the horizontal plane and at each of four starting arm positions. Non-negative matrix factorization was applied to the EMG data to identify the muscle synergies. Five and six muscle synergies were found to represent the isometric force generation and point-to-point reaches. We also found that the number and composition of muscle synergies were conserved across the arm workspace per motor task. Similar tuning directions of muscle synergy activation profiles were observed at different starting arm locations. Between the isometric and kinematic motor tasks, we found that two to four out of five muscle synergies were common in the composition and activation profiles across the starting arm locations. The greater number of muscle synergies that were involved in achieving a target match in the reaching task compared to the isometric task may explain the complexity of neuromotor control in arm reaching movements. Overall, our results may provide further insight into the neuromotor compartmentalization of shared muscle synergies between two different arm motor tasks and can be utilized to assess motor disabilities in individuals with upper limb motor impairments.more » « less
-
This paper will investigate the effects of pennate angle on fluidic artificial muscle (FAM) bundles for a robot arm motion. Rising interest in soft fluidic actuators exists due to their prospective inherent compliance and safe human-robot interaction. The high force-to-weight ratio, innate flexibility, inexpensive construction, and muscle-like force-contraction behavior of McKibben FAMs make them an attractive type of soft fluidic actuator. Multi-unit architectures found in biological muscles tissues and geometric fiber arrangements have inspired the development of hierarchical actuators to enhance the total actuator performance and increase actuator functionality. Parallel, asymmetric unipennate, and symmetric bipennate are three muscle fiber arrangement types found in human skeletal muscle tissues. Unique characteristics of the pennate muscle tissue, with muscle fibers arranged obliquely from the line of muscle motion, enable passive regulation of effective transmission between the fibers and muscle. Prior studies developed an analytical model based on idealized assumptions to leverage this pennate topology in optimal fiber parameter design for FAM bundles under spatial bounds. The findings showed FAMs in the bipennate topology can be designed to amplify the muscle output force, contraction, and stiffness as compared to that of a parallel topology under equivalent spatial and operating constraints. This work seeks to extend upon previous studies by investigating the effects of pennate angle on actuation and system hydraulic efficiency for a robot arm with a more realistic FAM model. The results will progress toward tailoring actuator topology designs for custom compliant actuation applications.more » « less
An official website of the United States government
