skip to main content

Title: Corn Snakes Show Consistent Sarcomere Length Ranges Across Muscle Groups and Ontogeny

The force-generating capacity of muscle depends upon many factors including the actin-myosin filament overlap due to the relative length of the sarcomere. Consequently, the force output of a muscle may vary throughout its range of motion, and the body posture allowing maximum force generation may differ even in otherwise similar species. We hypothesized that corn snakes would show an ontogenetic shift in sarcomere length range from being centered on the plateau of the length-tension curve in small individuals to being on the descending limb in adults. Sarcomere lengths across the plateau would be advantageous for locomotion, while the descending limb would be advantageous for constriction due to the increase in force as the coil tightens around the prey. To test this hypothesis, we collected sarcomere lengths from freshly euthanized corn snakes, preserving segments in straight and maximally curved postures, and quantifying sarcomere length via light microscopy. We dissected 7 muscles (spinalis, semispinalis, multifidus, longissimus dorsi, iliocostalis (dorsal and ventral), and levator costae) in an ontogenetic series of corn snakes (mass = 80–335 g) at multiple regions along the body (anterior, middle, and posterior). Our data shows all of the muscles analyzed are on the descending limb of the length-tension curve at rest across all masses, regions, and muscles analyzed, with muscles shortening onto or past the plateau when flexed. While these results are consistent with being advantageous for constriction at all sizes, there could also be unknown benefits of this sarcomere arrangement for locomotion or striking.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative Organismal Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Quantitative functional anatomy of amniote thoracic and abdominal regions is crucial to understanding constraints on and adaptations for facilitating simultaneous breathing and locomotion. Crocodilians have diverse locomotor modes and variable breathing mechanics facilitated by basal and derived (accessory) muscles. However, the inherent flexibility of these systems is not well studied, and the functional specialisation of the crocodilian trunk is yet to be investigated. Increases in body size and trunk stiffness would be expected to cause a disproportionate increase in muscle force demands and therefore constrain the basal costal aspiration mechanism, necessitating changes in respiratory mechanics. Here, we describe the anatomy of the trunk muscles, their properties that determine muscle performance (mass, length and physiological cross‐sectional area [PCSA]) and investigate their scaling in juvenileAlligator mississippiensisspanning an order of magnitude in body mass (359 g–5.5 kg). Comparatively, the expiratory muscles (transversus abdominis,rectus abdominis,iliocostalis), which compress the trunk, have greater relative PCSA being specialised for greater force‐generating capacity, while the inspiratory muscles (diaphragmaticus,truncocaudalis ischiotruncus,ischiopubis), which create negative internal pressure, have greater relative fascicle lengths, being adapted for greater working range and contraction velocity. Fascicle lengths of the accessorydiaphragmaticusscaled with positive allometry in the alligators examined, enhancing contractile capacity, in line with this muscle's ability to modulate both tidal volume and breathing frequency in response to energetic demand during terrestrial locomotion. Theiliocostalis, an accessory expiratory muscle, also demonstrated positive allometry in fascicle lengths and mass. All accessory muscles of the infrapubic abdominal wall demonstrated positive allometry in PCSA, which would enhance their force‐generating capacity. Conversely, the basal tetrapod expiratory pump (transversus abdominis) scaled isometrically, which may indicate a decreased reliance on this muscle with ontogeny. Collectively, these findings would support existing anecdotal evidence that crocodilians shift their breathing mechanics as they increase in size. Furthermore, the functional specialisation of thediaphragmaticusand compliance of the body wall in the lumbar region against which it works may contribute to low‐cost breathing in crocodilians.

    more » « less
  2. Abstract

    Muscles spanning multiple joints play important functional roles in a wide range of systems across tetrapods; however, their fundamental mechanics are poorly understood, particularly the consequences of anatomical position on mechanical advantage. Snakes provide an excellent study system for advancing this topic. They rely on the axial muscles for many activities, including striking, constriction, defensive displays, and locomotion. Moreover, those muscles span from one or a few vertebrae to over 30, and anatomy varies among muscles and among species. We characterized the anatomy of major epaxial muscles in a size series of corn snakes (Pantherophis guttatus) using diceCT scans, and then took several approaches to calculating contributions of each muscle to force and motion generated during body bending, starting from a highly simplistic model and moving to increasingly complex and realistic models. Only the most realistic model yielded equations that included the consequence of muscle span on torque‐displacement trade‐offs, as well as resolving ambiguities that arose from simpler models. We also tested whether muscle cross‐sectional areas or lever arms (total magnitude or pitch/yaw/roll components) were related to snake mass, longitudinal body region (anterior, middle, posterior), and/or muscle group (semispinalis‐spinalis, multifidus, longissimus dorsi, iliocostalis, and levator costae). Muscle cross‐sectional areas generally scaled with positive allometry, and most lever arms did not depart significantly from geometric similarity (isometry). The levator costae had lower cross‐sectional area than the four epaxial muscles, which did not differ significantly from each other in cross‐sectional area. Lever arm total magnitudes and components differed among muscles. We found some evidence for regional variation, indicating that functional regionalization merits further investigation. Our results contribute to knowledge of snake muscles specifically and multiarticular muscle systems generally, providing a foundation for future comparisons across species and bioinspired multiarticular systems.

    more » « less
  3. Abstract

    Understanding the origin and maintenance of functionally important subordinate traits is a major goal of evolutionary physiologists and ecomorphologists. Within the confines of a limbless body plan, snakes are diverse in terms of body size and ecology, but we know little about the functional traits that underlie this diversity. We used a phylogenetically diverse group of 131 snake species to examine associations between habitat use, sidewinding locomotion and constriction behaviour with the number of body vertebrae spanned by a single segment of the spinalis muscle, with total numbers of body vertebrae used as a covariate in statistical analyses. We compared models with combinations of these predictors to determine which best fit the data among all species and for the advanced snakes only (N = 114). We used both ordinary least‐squares models and phylogenetic models in which the residuals were modelled as evolving by the Ornstein–Uhlenbeck process. Snakes with greater numbers of vertebrae tended to have spinalis muscles that spanned more vertebrae. Habitat effects dominated models for analyses of all species and advanced snakes only, with the spinalis length spanning more vertebrae in arboreal species and fewer vertebrae in aquatic and burrowing species. Sidewinding specialists had shorter muscle lengths than nonspecialists. The relationship between prey constriction and spinalis length was less clear. Differences among clades were also strong when considering all species, but not for advanced snakes alone. Overall, these results suggest that muscle morphology may have played a key role in the adaptive radiation of snakes.

    more » « less
  4. Abstract

    There is a functional trade‐off in the design of skeletal muscle. Muscle strength depends on the number of muscle fibers in parallel, while shortening velocity and operational distance depend on fascicle length, leading to a trade‐off between the maximum force a muscle can produce and its ability to change length and contract rapidly. This trade‐off becomes even more pronounced as animals increase in size because muscle strength scales with area (length2) while body mass scales with volume (length3). In order to understand this muscle trade‐off and how animals deal with the biomechanical consequences of size, we investigated muscle properties in the pectoral girdle of varanid lizards. Varanids are an ideal group to study the scaling of muscle properties because they retain similar body proportions and posture across five orders of magnitude in body mass and are highly active, terrestrially adapted reptiles. We measured muscle mass, physiological cross‐sectional area, fascicle length, proximal and distal tendon lengths, and proximal and distal moment arms for 27 pectoral girdle muscles in 13 individuals across 8 species ranging from 64 g to 40 kg. Standard and phylogenetically informed reduced major axis regression was used to investigate how muscle architecture properties scale with body size. Allometric growth was widespread for muscle mass (scaling exponent >1), physiological cross‐sectional area (scaling exponent >0.66), but not tendon length (scaling exponent >0.33). Positive allometry for muscle mass was universal among muscles responsible for translating the trunk forward and flexing the elbow, and nearly universal among humeral protractors and wrist flexors. Positive allometry for PCSA was also common among trunk translators and humeral protractors, though less so than muscle mass. Positive scaling for fascicle length was not widespread, but common among humeral protractors. A higher proportion of pectoral girdle muscles scaled with positive allometry than our previous work showed for the pelvic girdle, suggesting that the center of mass may move cranially with body size in varanids, or that the pectoral girdle may assume a more dominant role in locomotion in larger species. Scaling exponents for physiological cross‐sectional area among muscles primarily associated with propulsion or with a dual role were generally higher than those associated primarily with support against gravity, suggesting that locomotor demands have at least an equal influence on muscle architecture as body support. Overall, these results suggest that larger varanids compensate for the increased biomechanical demands of locomotion and body support at higher body sizes by developing larger pectoral muscles with higher physiological cross‐sectional areas. The isometric scaling rates for fascicle length among locomotion‐oriented pectoral girdle muscles suggest that larger varanids may be forced to use shorter stride lengths, but this problem may be circumvented by increases in limb excursion afforded by the sliding coracosternal joint.

    more » « less
  5. Abstract

    Body size is a key factor that influences antipredator behavior. For animals that rely on jumping to escape from predators, there is a theoretical trade‐off between jump distance and acceleration as body size changes at both the inter‐ and intraspecific levels. Assuming geometric similarity, acceleration will decrease with increasing body size due to a smaller increase in muscle cross‐sectional area than body mass. Smaller animals will likely have a similar jump distance as larger animals due to their shorter limbs and faster accelerations. Therefore, in order to maintain acceleration in a jump across different body sizes, hind limbs must be disproportionately bigger for larger animals. We explored this prediction using four species of kangaroo rats (Dipodomysspp.), a genus of bipedal rodent with similar morphology across a range of body sizes (40–150 g). Kangaroo rat jump performance was measured by simulating snake strikes to free‐ranging individuals. Additionally, morphological measurements of hind limb muscles and segment lengths were obtained from thawed frozen specimens. Overall, jump acceleration was constant across body sizes and jump distance increased with increasing size. Additionally, kangaroo rat hind limb muscle mass and cross‐sectional area scaled with positive allometry. Ankle extensor tendon cross‐sectional area also scaled with positive allometry. Hind limb segment length scaled isometrically, with the exception of the metatarsals, which scaled with negative allometry. Overall, these findings support the hypothesis that kangaroo rat hind limbs are built to maintain jump acceleration rather than jump distance. Selective pressure from single‐strike predators, such as snakes and owls, likely drives this relationship.

    more » « less