skip to main content


Title: Statistical copolymer metal organic nanotubes
Metal–organic nanotubes (MONTs) are 1-dimensional crystalline porous materials that are formed from ligands and metals in a manner identical to more typical 3-dimensional metal–organic frameworks (MOFs). MONTs form anisotropically in one dimension making them excellent candidates for linker engineering for control of chemical composition and spacing. A novel series of MONTs was synthesized utilizing a mixture of 1,2,4-ditriazole ligands containing both a fully protonated aryl moiety and its tetrafluorinated analog in ratios of, 0 : 1, 1 : 4, 1 : 1, 4 : 1, and 1 : 0, respectively. All MONTs were characterized by both bulk and nanoscale measurements, including SCXRD, PXRD, ssNMR and TEM, to determine the resulting co-polymer architecture (alternating, block, or statistical) and the ligand ratios in the solid materials. All characterization methods point towards statistical copolymerization of the materials in a manner analogous to 3D MOFs, all of which notably could be achieved without destructive analytical methods.  more » « less
Award ID(s):
2207224
NSF-PAR ID:
10431487
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
14
Issue:
4
ISSN:
2041-6520
Page Range / eLocation ID:
1003 to 1009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metal–organic frameworks (MOFs) constructed with M0nodes are attractive targets due to the reactivity of these low‐valent metals, but examples of these MOFs remain exceedingly rare. The rational design of three‐dimensional MOFs with Pd0and Pt0nodes using tetratopic phosphine ligands is reported. Five new MOFs have been synthesized by systematic variation of the phosphine ligands and metal precursors employed, and these represent the first examples of MOFs constructed using phosphine–metal bonds as the sole structural component. The MOFs display solid‐state luminescence, with emission maxima that are significantly red‐shifted compared to Pd(PPh3)4. In addition, a RhIlow‐valent coordination solid based on the same linker design is reported, which displays solid‐state luminescence that is not observed for the molecular analogue.

     
    more » « less
  2. Abstract

    Metal–organic frameworks (MOFs) constructed with M0nodes are attractive targets due to the reactivity of these low‐valent metals, but examples of these MOFs remain exceedingly rare. The rational design of three‐dimensional MOFs with Pd0and Pt0nodes using tetratopic phosphine ligands is reported. Five new MOFs have been synthesized by systematic variation of the phosphine ligands and metal precursors employed, and these represent the first examples of MOFs constructed using phosphine–metal bonds as the sole structural component. The MOFs display solid‐state luminescence, with emission maxima that are significantly red‐shifted compared to Pd(PPh3)4. In addition, a RhIlow‐valent coordination solid based on the same linker design is reported, which displays solid‐state luminescence that is not observed for the molecular analogue.

     
    more » « less
  3. Abstract

    Metal–organic frameworks (MOFs) are crystalline, 2‐ and 3‐dimensional coordination polymers formed by bonding interactions between metals and multitopic organic ligands. These are typically formed using hard Lewis basic organic ligands with high oxidation state metal ions. The use of low‐valent metals as structural elements in MOFs is far less common, despite the widespread use of such metals for catalysis, luminescence, and other applications. This Minireview focuses on recent advances in the field of low‐valent MOFs and offers a perspective on the future development of these materials.

     
    more » « less
  4. Abstract

    Metal–organic frameworks (MOFs) are crystalline, 2‐ and 3‐dimensional coordination polymers formed by bonding interactions between metals and multitopic organic ligands. These are typically formed using hard Lewis basic organic ligands with high oxidation state metal ions. The use of low‐valent metals as structural elements in MOFs is far less common, despite the widespread use of such metals for catalysis, luminescence, and other applications. This Minireview focuses on recent advances in the field of low‐valent MOFs and offers a perspective on the future development of these materials.

     
    more » « less
  5. Functional porous metal–organic frameworks (MOFs) have been explored for a number of potential applications in catalysis, chemical sensing, water capture, gas storage, and separation. MOFs are among the most promising candidates to address challenges facing our society related to energy and environment, but the successful implementation of functional porous MOF materials are contingent on their stability; therefore, the rational design of stable MOFs plays an important role towards the development of functional porous MOFs. In this Focus article, we summarize progress in the rational design and synthesis of stable MOFs with controllable pores and functionalities. The implementation of reticular chemistry allows for the rational top-down design of stable porous MOFs with targeted topological networks and pore structures from the pre-selected building blocks. We highlight the reticular synthesis and applications of stable MOFs: (1) MOFs based on high valent metal ions ( e.g. , Al 3+ , Cr 3+ , Fe 3+ , Ti 4+ and Zr 4+ ) and carboxylate ligands; (2) MOFs based on low valent metal ions ( e.g. , Ni 2+ , Cu 2+ , and Zn 2+ ) and azolate linkers. We envision that the synthetic strategies, including modulated synthesis and post-synthetic modification, can potentially be extended to other more complex systems like metal-phosphonate framework materials. 
    more » « less