skip to main content


Title: Step-by-step state-selective tracking of fragmentation dynamics of water dications by momentum imaging
Abstract The double photoionization of a molecule by one photon ejects two electrons and typically creates an unstable dication. Observing the subsequent fragmentation products in coincidence can reveal a surprisingly detailed picture of the dynamics. Determining the time evolution and quantum mechanical states involved leads to deeper understanding of molecular dynamics. Here in a combined experimental and theoretical study, we unambiguously separate the sequential breakup via D +  + OD + intermediates, from other processes leading to the same D +  + D +  + O final products of double ionization of water by a single photon. Moreover, we experimentally identify, separate, and follow step by step, two pathways involving the b  1 Σ + and a 1 Δ electronic states of the intermediate OD + ion. Our classical trajectory calculations on the relevant potential energy surfaces reproduce well the measured data and, combined with the experiment, enable the determination of the internal energy and angular momentum distribution of the OD + intermediate.  more » « less
Award ID(s):
1807017
NSF-PAR ID:
10431494
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biomass is abundant, inexpensive and renewable, therefore, it is highly expected to play a significant role in our future energy and chemical landscapes. The US DOE has identified furanic compounds (furfural and 5-(hydroxymethyl)furfural (HMF)) as the top platform building-block chemicals that can be readily derived from biomass sources [1]. Electrocatalytic conversion of these furanic compounds is an emerging route for the sustainable production of valuable chemicals [2, 3]. In my presentation, I will first present our recent mechanistic study of electrocatlytic hydrogenation (ECH) of furfural through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies [4]. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important bio-based polymer precursors and fuels We further studied the mechanisms on the Pb electrode, based on the potential regulated ECH and ER products. Isotopic incorporation studies and electrokinetics have confirmed ECH process to alcohol and alkyl product followed different pathways: alcohol was generated from Langmuir Hinshelwood step through surface-bound furfural and hydrogen, which is sensitive to surface structures. In contrast, alkyl product was formed through an Eley–Rideal step via surface-bound furfural and the inner-sphere protons. By modifying the electrode/electrolyte interface, we have elucidated H2O and H3O+ matters in forming alcohol and alkyl products, respectively. Dynamic oscillation studies and electron paramagnetic resonance (EPR) finally confirmed that the alcohol and dimer products shared the same intermediate. The dimer was formed through the intermediate desorption from the surface to form radicals and the self-coupling of two radicals at the bulk electrolyte. Next, I will present electrocatalytic conversion of HMF to two biobased monomers in an H-type electrochemical cell [5]. HMF reduction (hydrogenation) to 2,5-bis(hydroxymethyl)furan (BHMF) was achieved under mild electrolyte conditions and ambient temperature using a Ag/C cathode. Meanwhile, HMF oxidation to 2,5-furandicarboxylic acid (FDCA) with ~100% efficiency was facilitated under the same conditions by a homogeneous nitroxyl radical redox mediator. We recently developed a three-electrode flow cell with an oxide-derived Ag (OD-Ag) cathode and catbon felt anode for paring elecatalytic oxidation and reduction of HMF [6]. The flow cell has a remarkably low cell voltage: from ~7.5 V to ~2.0 V by transferring the electrolysis from the H-type cell to the flow cell. This represents a more than fourfold increase in the energy efficiency at the 10 mA operation. A combined faradaic efficiency of 163% was obtained to BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ~0.85 V at 10 mA operation. These paired processes have shown potential for integrating renewable electricity and carbon for distributed chemical manufacturing in the future. 
    more » « less
  2. null (Ed.)
    The transfer of a β-hydrogen from a metal-alkyl group to ethylene is a fundamental organometallic transformation. Previously proposed mechanisms for this transformation involve either a two-step β-hydrogen elimination and migratory insertion sequence with a metal hydride intermediate or a one-step concerted pathway. Here, we report density functional theory (DFT) quasiclassical direct dynamics trajectories that reveal new dynamical mechanisms for the β-hydrogen transfer of [Cp*Rh III (Et)(ethylene)] + . Despite the DFT energy landscape showing a two-step mechanism with a Rh–H intermediate, quasiclassical trajectories commencing from the β-hydrogen elimination transition state revealed complete dynamical skipping of this intermediate. The skipping occurred either extremely fast (typically <100 femtoseconds (fs)) through a dynamically ballistic mechanism or slower through a dynamically unrelaxed mechanism. Consistent with trajectories begun at the transition state, all trajectories initiated at the Rh–H intermediate show continuation along the reaction coordinate. All of these trajectory outcomes are consistent with the Rh–H intermediate <1 kcal mol −1 stabilized relative to the β-hydrogen elimination and migratory insertion transition states. For Co, which on the energy landscape is a one-step concerted mechanism, trajectories showed extremely fast traversing of the transition-state zone (<50 fs), and this concerted mechanism is dynamically different than the Rh ballistic mechanism. In contrast to Rh, for Ir, in addition to dynamically ballistic and unrelaxed mechanisms, trajectories also stopped at the Ir–H intermediate. This is consistent with an Ir–H intermediate that is stabilized by ∼3 kcal mol −1 relative to the β-hydrogen elimination and migratory insertion transition states. Overall, comparison of Rh to Co and Ir provides understanding of the relationship between the energy surface shape and resulting dynamical mechanisms of an organometallic transformation. 
    more » « less
  3. Abstract Purpose

    The constrained one‐step spectral CT image reconstruction (cOSSCIR) algorithm with a nonconvex alternating direction method of multipliers optimizer is proposed for addressing computed tomography (CT) metal artifacts caused by beam hardening, noise, and photon starvation. The quantitative performance of cOSSCIR is investigated through a series of photon‐counting CT simulations.

    Methods

    cOSSCIR directly estimates basis material maps from photon‐counting data using a physics‐based forward model that accounts for beam hardening. The cOSSCIR optimization framework places constraints on the basis maps, which we hypothesize will stabilize the decomposition and reduce streaks caused by noise and photon starvation. Another advantage of cOSSCIR is that the spectral data need not be registered, so that a ray can be used even if some energy window measurements are unavailable. Photon‐counting CT acquisitions of a virtual pelvic phantom with low‐contrast soft tissue texture and bilateral hip prostheses were simulated. Bone and water basis maps were estimated using the cOSSCIR algorithm and combined to form a virtual monoenergetic image for the evaluation of metal artifacts. The cOSSCIR images were compared to a “two‐step” decomposition approach that first estimated basis sinograms using a maximum likelihood algorithm and then reconstructed basis maps using an iterative total variation constrained least‐squares optimization (MLE+TV). Images were also compared to a nonspectral TV reconstruction of the total number of counts detected for each ray with and without normalized metal artifact reduction (NMAR) applied. The simulated metal density was increased to investigate the effects of increasing photon starvation. The quantitative error and standard deviation in regions of the phantom were compared across the investigated algorithms. The ability of cOSSCIR to reproduce the soft‐tissue texture, while reducing metal artifacts, was quantitatively evaluated.

    Results

    Noiseless simulations demonstrated the convergence of the cOSSCIR and MLE+TV algorithms to the correct basis maps in the presence of beam‐hardening effects. When noise was simulated, cOSSCIR demonstrated a quantitative error of −1 HU, compared to 2 HU error for the MLE+TV algorithm and −154 HU error for the nonspectral TV+NMAR algorithm. For the cOSSCIR algorithm, the standard deviation in the central iodine region of interest was 20 HU, compared to 299 HU for the MLE+TV algorithm, 41 HU for the MLE+TV+Mask algorithm that excluded rays through metal, and 55 HU for the nonspectral TV+NMAR algorithm. Increasing levels of photon starvation did not impact the bias or standard deviation of the cOSSCIR images. cOSSCIR was able to reproduce the soft‐tissue texture when an appropriate regularization constraint value was selected.

    Conclusions

    By directly inverting photon‐counting CT data into basis maps using an accurate physics‐based forward model and a constrained optimization algorithm, cOSSCIR avoids metal artifacts due to beam hardening, noise, and photon starvation. The cOSSCIR algorithm demonstrated improved stability and accuracy compared to a two‐step method of decomposition followed by reconstruction.

     
    more » « less
  4. Abstract Background

    Spectral CT material decomposition provides quantitative information but is challenged by the instability of the inversion into basis materials. We have previously proposed the constrained One‐Step Spectral CT Image Reconstruction (cOSSCIR) algorithm to stabilize the material decomposition inversion by directly estimating basis material images from spectral CT data. cOSSCIR was previously investigated on phantom data.

    Purpose

    This study investigates the performance of cOSSCIR using head CT datasets acquired on a clinical photon‐counting CT (PCCT) prototype. This is the first investigation of cOSSCIR for large‐scale, anatomically complex, clinical PCCT data. The cOSSCIR decomposition is preceded by a spectrum estimation and nonlinear counts correction calibration step to address nonideal detector effects.

    Methods

    Head CT data were acquired on an early prototype clinical PCCT system using an edge‐on silicon detector with eight energy bins. Calibration data of a step wedge phantom were also acquired and used to train a spectral model to account for the source spectrum and detector spectral response, and also to train a nonlinear counts correction model to account for pulse pileup effects. The cOSSCIR algorithm optimized the bone and adipose basis images directly from the photon counts data, while placing a grouped total variation (TV) constraint on the basis images. For comparison, basis images were also reconstructed by a two‐step projection‐domain approach of Maximum Likelihood Estimation (MLE) for decomposing basis sinograms, followed by filtered backprojection (MLE + FBP) or a TV minimization algorithm (MLE + TVmin) to reconstruct basis images. We hypothesize that the cOSSCIR approach will provide a more stable inversion into basis images compared to two‐step approaches. To investigate this hypothesis, the noise standard deviation in bone and soft‐tissue regions of interest (ROIs) in the reconstructed images were compared between cOSSCIR and the two‐step methods for a range of regularization constraint settings.

    Results

    cOSSCIR reduced the noise standard deviation in the basis images by a factor of two to six compared to that of MLE + TVmin, when both algorithms were constrained to produce images with the same TV. The cOSSCIR images demonstrated qualitatively improved spatial resolution and depiction of fine anatomical detail. The MLE + TVminalgorithm resulted in lower noise standard deviation than cOSSCIR for the virtual monoenergetic images (VMIs) at higher energy levels and constraint settings, while the cOSSCIR VMIs resulted in lower noise standard deviation at lower energy levels and overall higher qualitative spatial resolution. There were no statistically significant differences in the mean values within the bone region of images reconstructed by the studied algorithms. There were statistically significant differences in the mean values within the soft‐tissue region of the reconstructed images, with cOSSCIR producing mean values closer to the expected values.

    Conclusions

    The cOSSCIR algorithm, combined with our previously proposed spectral model estimation and nonlinear counts correction method, successfully estimated bone and adipose basis images from high resolution, large‐scale patient data from a clinical PCCT prototype. The cOSSCIR basis images were able to depict fine anatomical details with a factor of two to six reduction in noise standard deviation compared to that of the MLE + TVmintwo‐step approach.

     
    more » « less
  5. Abstract We present state-selective measurements on the N H 2 + + H + and NH + + H + + H dissociation channels following single-photon double ionization at 61.5 eV of neutral NH 3 , where the two photoelectrons and two cations are measured in coincidence using 3D momentum imaging. Three dication electronic states are identified to contribute to the N H 2 + + H + dissociation channel, where the excitation in one of the three states undergoes intersystem crossing prior to dissociation, producing a cold N H 2 + fragment. In contrast, the other two states directly dissociate, producing a ro-vibrationally excited N H 2 + fragment with roughly 1 eV of internal energy. The NH + + H + + H channel is fed by direct dissociation from three intermediate dication states, one of which is shared with the N H 2 + + H + channel. We find evidence of autoionization contributing to each of the double ionization channels. The distributions of the relative emission angle between the two photoelectrons, as well as the relative angle between the recoil axis of the molecular breakup and the polarization vector of the ionizing field, are also presented to provide insight on both the photoionization and photodissociation mechanisms for the different dication states. 
    more » « less