skip to main content

Title: Mechanistic molecular motion of transition-metal mediated β-hydrogen transfer: quasiclassical trajectories reveal dynamically ballistic, dynamically unrelaxed, two step, and concerted mechanisms
The transfer of a β-hydrogen from a metal-alkyl group to ethylene is a fundamental organometallic transformation. Previously proposed mechanisms for this transformation involve either a two-step β-hydrogen elimination and migratory insertion sequence with a metal hydride intermediate or a one-step concerted pathway. Here, we report density functional theory (DFT) quasiclassical direct dynamics trajectories that reveal new dynamical mechanisms for the β-hydrogen transfer of [Cp*Rh III (Et)(ethylene)] + . Despite the DFT energy landscape showing a two-step mechanism with a Rh–H intermediate, quasiclassical trajectories commencing from the β-hydrogen elimination transition state revealed complete dynamical skipping of this intermediate. The skipping occurred either extremely fast (typically <100 femtoseconds (fs)) through a dynamically ballistic mechanism or slower through a dynamically unrelaxed mechanism. Consistent with trajectories begun at the transition state, all trajectories initiated at the Rh–H intermediate show continuation along the reaction coordinate. All of these trajectory outcomes are consistent with the Rh–H intermediate <1 kcal mol −1 stabilized relative to the β-hydrogen elimination and migratory insertion transition states. For Co, which on the energy landscape is a one-step concerted mechanism, trajectories showed extremely fast traversing of the transition-state zone (<50 fs), and this concerted mechanism is dynamically different than the Rh ballistic more » mechanism. In contrast to Rh, for Ir, in addition to dynamically ballistic and unrelaxed mechanisms, trajectories also stopped at the Ir–H intermediate. This is consistent with an Ir–H intermediate that is stabilized by ∼3 kcal mol −1 relative to the β-hydrogen elimination and migratory insertion transition states. Overall, comparison of Rh to Co and Ir provides understanding of the relationship between the energy surface shape and resulting dynamical mechanisms of an organometallic transformation. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Dalton Transactions
Page Range or eLocation-ID:
7747 to 7757
Sponsoring Org:
National Science Foundation
More Like this
  1. Catalytic site-selective hydroallylation of vinyl arenes and 1,3-dienes is reported. Transformations are promoted by a readily accessible bidentate carbodicarbene-rhodium complex and involve commercially available allyltrifluoroborates and an alco-hol. The reaction is applicable to vinyl arenes, and aryl or alkyl-substituted 1,3-dienes (30 examples). Allyl addition products are generated in 40–78% yield and in up to >98:2 site-selectivity. Reaction outcomes are consistent with the intermedi-acy of a Rh(III)-hydride generated by protonation of Rh(I) by an acid. A number of key mechanistic details of the reaction are presented: (1) Deuterium scrambling into the product and starting alkene indicates reversible Rh(III)–H migratory insertion. (2)more »A large primary kinetic isotope effect is observed. (3) With substituted allyltrifluoroborates (e.g., crotyl-BF3K) mixtures of site isomers are generated as a result of transmetalation followed by Rh-(allyl) complex equilibration; consequently, disproving outer-sphere addition of the allyl nucleophile to Rh(III)-(η3-allyl). (4) The stereochemical analysis of a cyclohexadiene allyl addition product supports a syn Rh(III)–hydride addition. (5) A Hammett plot shows a negative slope suggesting reductive elimination as the rate-determining step. Finally, utility is highlighted by a iodocyclization and cross metathesis.« less
  2. Pyridine and quinoline undergo selective C–H activation in the 2-position with Rh and Ir complexes of a boryl/bis(phosphine) PBP pincer ligand, resulting in a 2-pyridyl bridging the transition metal and the boron center. Examination of this reactivity with Rh and Ir complexes carrying different non-pincer ligands on the transition metal led to the realization of the possible isomerism derived from the 2-pyridyl fragment connecting either via B–N/C–M bonds or via B–C/N–M bonds. This M–C/M–N isomerism was systematically examined for four structural types. Each of these types has a defined set of ligands on Rh/Ir besides 2-pyridyl and PBP. A pairmore »of M–C/M–N isomers for each type was computationally examined for Rh and for Ir, totaling 16 compounds. Several of these compounds were isolated or observed in solution by experimental methods, in addition to a few 2-quinolyl variants. The DFT predictions concerning the thermodynamic preference within each M–C/M–N isomeric match the experimental findings very well. In two cases where DFT predicts <2 kcal mol −1 difference in free energy, both isomers were experimentally observed in solution. Analysis of the structural data, of the relevant Wiberg bond indices, and of the ETS-NOCV partitioning of the interaction of the 2-pyridyl fragment with the rest of the molecule points to the strength of the M–C(pyridyl) bond as the dominant parameter determining the relative M–C/M–N isomer favorability. This M–C bond is always stronger for the analogous Ir vs. Rh compounds, but the nature of the ligand trans to it has a significant influence, as well. DFT calculations were used to evaluate the mechanism of isomerization for one of the molecule types.« less
  3. Glycoside hydrolase enzymes are important for hydrolyzing the β-1,4 glycosidic bond in polysaccharides for deconstruction of carbohydrates. The two-step retaining reaction mechanism of Glycoside Hydrolase Family 7 (GH7) was explored with different sized QM-cluster models built by the Residue Interaction Network ResidUe Selector (RINRUS) software using both the wild-type protein and its E217Q mutant. The first step is the glycosylation, in which the acidic residue 217 donates a proton to the glycosidic oxygen leading to bond cleavage. In the subsequent deglycosylation step, one water molecule migrates into the active site and attacks the anomeric carbon. Residue interaction-based QM-cluster models leadmore »to reliable structural and energetic results for proposed glycoside hydrolase mechanisms. The free energies of activation for glycosylation in the largest QM-cluster models were predicted to be 19.5 and 31.4 kcal mol −1 for the wild-type protein and its E217Q mutant, which agree with experimental trends that mutation of the acidic residue Glu217 to Gln will slow down the reaction; and are higher in free energy than the deglycosylation transition states (13.8 and 25.5 kcal mol −1 for the wild-type protein and its mutant, respectively). For the mutated protein, glycosylation led to a low-energy product. This thermodynamic sink may correspond to the intermediate state which was isolated in the X-ray crystal structure. Hence, the glycosylation is validated to be the rate-limiting step in both the wild-type and mutated enzyme.« less
  4. Intramolecular C–H insertions with donor/donor dirhodium carbenes provide a concise and highly stereoselective method to set two contiguous stereocenters in a single step. Herein, we report the insertion of donor/donor carbenes into stereogenic carbon centers allowing access to trisubstituted benzodihydrofurans in a single step. This study illuminates, for the first time, the stereochemical impact on the carbene center and delineates the structural factors that enable control over both stereogenic centers. Sterically bulky, highly activated C–H insertion centers exhibit high substrate control yielding a single diastereomer and a single enantiomer of product regardless of the catalyst used. Less bulky, less activatedmore »C–H insertion centers exhibit catalyst control over the diastereomeric ratio (dr), where a single enantiomer of each diastereomer is observed with high selectivity. A combination of experimental studies and DFT calculations was used to elucidate the origin of these results. First, hydride transfer from the stereogenic insertion site proceeds with high stereoselectivity to the carbene center, thus determining the absolute configuration of the product. Second, the short lived zwitterionic intermediate can diaster-eoselectively ring-close by a hitherto unreported S E 2 mechanism that is either controlled by the substrate or the catalyst. These results demonstrate that donor/donor carbenes undergo uniquely stereoselective reactions that originate from a stepwise reaction mechanism, in contrast to the analogous concerted reactions of carbenes with one or more electron-withdrawing groups attached.« less
  5. Abstract The mechanisms by which the complexes CpCoL2 (Cp = C5H5; L = CO or CH2=CH2) mediate the cycloisomerizations of α,δ,ω-enynenes containing allylic ether linkages are probed by DFT methods. The outcomes corroborate experimental results and provide energetic and structural details of the trajectories leading to 3-(oxacyclopentyl or cycloalkyl)furans via the intermediacy of isolable CpCo-η 4-dienes. They comprise initial stereoselective complexation of one of the double bonds and the triple bond, rate-determining oxidative coupling to a triplet 16e cobalta-2-cyclopentene, and terminal double bond docking, followed by stereocontrolled insertion to assemble intermediate cis- and trans-fused triplet cobalta-4-cycloheptenes. A common indicator ofmore »the energetic facility of the latter is the extent of parallel alignment of the alkene moiety and its target Co–Cα bond. The cobalta-4-cycloheptenes transform further by β-hydride elimination–reductive elimination to furnish CpCo-η 4-dienes, which are sufficiently kinetically protected to allow for their experimental observation. The cascade continues through cobalt-mediated hydride shifts and dissociation of the aromatic furan ring. The findings in silico with respect to the stereo-, regio-, and chemoselectivity are in consonance with those obtained in vitro.« less