skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of mutant lamins on nucleo-cytoskeletal coupling in Drosophila models of LMNA muscular dystrophy
The nuclei of multinucleated skeletal muscles experience substantial external force during development and muscle contraction. Protection from such forces is partly provided by lamins, intermediate filaments that form a scaffold lining the inner nuclear membrane. Lamins play a myriad of roles, including maintenance of nuclear shape and stability, mediation of nuclear mechanoresponses, and nucleo-cytoskeletal coupling. Herein, we investigate how disease-causing mutant lamins alter myonuclear properties in response to mechanical force. This was accomplished via a novel application of a micropipette harpooning assay applied to larval body wall muscles of Drosophila models of lamin-associated muscular dystrophy. The assay enables the measurement of both nuclear deformability and intracellular force transmission between the cytoskeleton and nuclear interior in intact muscle fibers. Our studies revealed that specific mutant lamins increase nuclear deformability while other mutant lamins cause nucleo-cytoskeletal coupling defects, which were associated with loss of microtubular nuclear caging. We found that microtubule caging of the nucleus depended on Msp300, a KASH domain protein that is a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Taken together, these findings identified residues in lamins required for connecting the nucleus to the cytoskeleton and suggest that not all muscle disease-causing mutant lamins produce similar defects in subcellular mechanics.  more » « less
Award ID(s):
2022048
PAR ID:
10431524
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Cell and Developmental Biology
Volume:
10
ISSN:
2296-634X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cytoskeleton‐mediated force transmission regulates nucleus morphology. How nuclei shaping occurs in fibrous in vivo environments remains poorly understood. Here suspended nanofiber networks of precisely tunable (nm–µm) diameters are used to quantify nucleus plasticity in fibrous environments mimicking the natural extracellular matrix. Contrary to the apical cap over the nucleus in cells on 2‐dimensional surfaces, the cytoskeleton of cells on fibers displays a uniform actin network caging the nucleus. The role of contractility‐driven caging in sculpting nuclear shapes is investigated as cells spread on aligned single fibers, doublets, and multiple fibers of varying diameters. Cell contractility increases with fiber diameter due to increased focal adhesion clustering and density of actin stress fibers, which correlates with increased mechanosensitive transcription factor Yes‐associated protein (YAP) translocation to the nucleus. Unexpectedly, large‐ and small‐diameter fiber combinations lead to teardrop‐shaped nuclei due to stress fiber anisotropy across the cell. As cells spread on fibers, diameter‐dependent nuclear envelope invaginations that run the nucleus's length are formed at fiber contact sites. The sharpest invaginations enriched with heterochromatin clustering and sites of DNA repair are insufficient to trigger nucleus rupture. Overall, the authors quantitate the previously unknown sculpting and adaptability of nuclei to fibrous environments with pathophysiological implications. 
    more » « less
  2. Discher, Dennis (Ed.)
    Lamins are nuclear intermediate filament proteins that are ubiquitously found in metazoan cells, where they contribute to nuclear morphology, stability, and gene expression. Lamin-like sequences have recently been identified in distantly related eukaryotes, but it remains unclear whether these proteins share conserved functions with the lamins found in metazoans. Here, we investigate conserved features between metazoan and amoebozoan lamins using a genetic complementation system to express the Dictyostelium discoideum lamin-like protein NE81 in mammalian cells lacking either specific lamins or all endogenous lamins. We report that NE81 localizes to the nucleus in cells lacking Lamin A/C, and that NE81 expression improves nuclear circularity, reduces nuclear deformability, and prevents nuclear envelope rupture in these cells. However, NE81 did not completely rescue loss of Lamin A/C, and was unable to restore normal distribution of metazoan lamin interactors, such as emerin and nuclear pore complexes, which are frequently displaced in Lamin A/C deficient cells. Collectively, our results indicate that the ability of lamins to modulate the morphology and mechanical properties of nuclei may have been a feature present in the common ancestor of Dictyostelium and animals, whereas other, more specialized interactions may have evolved more recently in metazoan lineages. 
    more » « less
  3. Discher, Dennis (Ed.)
    The LMNA gene encodes the nuclear envelope proteins Lamins A and C, which comprise a major part of the nuclear lamina, provide mechanical support to the nucleus, and participate in diverse-intracellular signaling. LMNA mutations give rise to a collection of diseases called laminopathies, including dilated cardiomyopathy ( LMNA-DCM) and muscular dystrophies. Although nuclear deformities are a hallmark of LMNA-DCM, the role of nuclear abnormalities in the pathogenesis of -DCM remains incompletely understood. Using induced-pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from LMNA-mutant patients and healthy controls, we show that LMNA mutant iPSC-CM nuclei have altered shape or increased size compared with healthy control iPSC-CM nuclei. The LMNA mutation exhibiting the most severe nuclear deformities, R249Q, additionally caused reduced nuclear stiffness and increased nuclear fragility. Importantly, for all cell lines, the degree of nuclear abnormalities corresponded to the degree of Lamin A/C and Lamin B1 mislocalization from the nuclear envelope. The mislocalization was likely due to altered assembly of Lamin A/C. Collectively, these results point to the importance of correct lamin assembly at the nuclear envelope in providing mechanical stability to the nucleus and suggests that defects in nuclear lamina organization may contribute to the nuclear and cellular dysfunction in LMNA-DCM. 
    more » « less
  4. Abstract Nuclear lamins have been considered an important structural element of the nucleus. The nuclear lamina is thought both to shield DNA from excessive mechanical forces and to transmit mechanical forces onto the DNA. However, to date there is not yet a technical approach to directly measure mechanical forces on nuclear lamins at the protein level. To overcome this limitation, we developed a nanobody-based intermolecular tension FRET biosensor capable of measuring the mechanical strain of lamin filaments. Using this sensor, we were able to show that the nuclear lamina is subjected to significant force. These forces are dependent on nuclear volume, actomyosin contractility, functional LINC complex, chromatin condensation state, cell cycle, and EMT. Interestingly, large forces were also present on nucleoplasmic lamins, indicating that these lamins may also have an important mechanical role in the nucleus. Overall, we demonstrate that the nanobody-based approach allows construction of biosensors for complex protein structures for mechanobiology studies. 
    more » « less
  5. Abstract The mechanical properties of the cellular nucleus are extensively studied as they play a critical role in important processes, such as cell migration, gene transcription, and stem cell differentiation. While the mechanical properties of the isolated nucleus have been tested, there is a lack of measurements about the mechanical behavior of the nucleus within intact cells and specifically about the interplay of internal nuclear components with the intracellular microenvironment, because current testing methods are based on contact and only allow studying the nucleus after isolation from a cell or disruption of cytoskeleton. Here, all‐optical Brillouin microscopy and 3D chemomechanical modeling are used to investigate the regulation of nuclear mechanics in physiological conditions. It is observed that the nuclear modulus can be modulated by epigenetic regulation targeting internal nuclear nanostructures such as lamin A/C and chromatin. It is also found that nuclear modulus is strongly regulated by cytoskeletal behavior through a robust mechanism conserved in different culturing conditions. Given the active role of cytoskeletal modulation in nearly all cell functions, this work will enable to reveal highly relevant mechanisms of nuclear mechanical regulations in physiological and pathological conditions. 
    more » « less