skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interference, diffraction, and diode effects in superconducting array based on bismuth antimony telluride topological insulator
Abstract It is well-known in optics that the spectroscopic resolution of a diffraction grating is much better compared to an interference device having just two slits, as in Young’s famous double-slit experiment. On the other hand, it is well known that a classical superconducting quantum interference device (SQUID) is analogous to the optical double-slit experiment. Here we report experiments and present a model describing a superconducting analogue to the diffraction grating, namely an array of superconducting islands positioned on a topological insulator film Bi0.8Sb1.2Te3. In the limit of an extremely weak field, of the order of one vortex per the entire array, such devices exhibit a critical current peak that is much sharper than the analogous peak of an ordinary SQUID. Therefore, such arrays can be used as sensitive absolute magnetic field sensors. A key finding is that the device acts as a superconducting diode, controlled by magnetic field.  more » « less
Award ID(s):
2016136 2104757
PAR ID:
10431567
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
6
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct write patterning of high-transition temperature (high-TC) superconducting oxide thin films with a focused helium ion beam is a formidable approach for the scaling of high-TC circuit feature sizes down to the nanoscale. In this letter, we report using this technique to create a sensitive micro superconducting quantum interference device (SQUID) magnetometer with a sensing area of about 100 × 100 μm2. The device is fabricated from a single 35-nm thick YBa2Cu3O7−δ film. A flux concentrating pick-up loop is directly coupled to a 10 nm × 20 μm nano-slit SQUID. The SQUID is defined entirely by helium ion irradiation from a gas field ion source. The irradiation converts the superconductor to an insulator, and no material is milled away or etched. In this manner, a very narrow non-superconducting nano-slit is created entirely within the plane of the film. The narrow slit dimension allows for maximization of the coupling to the field concentrator. Electrical measurements reveal a large 0.35 mV modulation with a magnetic field. We measure a white noise level of 2 μΦ0/Hz1∕2. The field noise of the magnetometer is 4 pT/Hz1∕2 at 4.2 K. 
    more » « less
  2. Previous work has highlighted the difficulties students have when explaining wave behavior. We present an investigation of chemistry students’ understanding of the double-slit experiment, where students were asked to explain a series of PhET simulations illustrating a single continuous light source, single-slit diffraction, and double-slit interference. We observed a variation in student reasoning and students were categorized into groups based on their ability to explain and generate a mechanism for the double-slit experiment. Some students struggled to explain the features of waves which impacted their reasoning about interference and caused them to rely on intuition to generate explanations. Other students were able to productively incorporate their previous knowledge about wave behavior, with their observations from the simulations, to build a robust mechanism for wave interference. However, students generally exhibited a limited understanding of interference, and specifically attending to the key features of waves during instruction can promote more sophisticated reasoning about this phenomenon. 
    more » « less
  3. In easy-plane magnets, the spin superfluid phase was predicted to facilitate coherent spin transport. So far, experimental evidence remains elusive. In this Letter, we propose an indirect way to sense this effect via the spin superfluid quantum interference device (spin SQUID), inspired by its superconducting counterpart (rf SQUID). The spin SQUID is constructed as a quasi-one-dimensional (1D) magnetic ring with a single Josephson weak link, functioning as an isolated device with a microwave response. The spin current is controlled by an in-plane electric field through Dzyaloshinskii-Moriya interaction. This interaction can be interpreted as a gauge field that couples to the spin supercurrent through the Aharonov-Casher effect. By investigating the static and dynamic properties of the device, we show that the spin current and the harmonic frequencies of the spin superfluid are periodic with respect to the accumulated Aharonov-Casher phase and are, therefore, sensitive to the radial electric flux through the ring in units of an electric flux quantum, suggesting a potential electric-field sensing functionality. For readout, we propose to apply spectroscopic analysis to detect the frequency shift of the harmonic modes induced by this magnonic Stark effect. 
    more » « less
  4. null (Ed.)
    Two-dimensional materials based on transition metal carbides have been intensively studied due to their unique properties including metallic conductivity, hydrophilicity and structural diversity and have shown a great potential in several applications, for example, energy storage, sensing and optoelectronics. While MXenes based on magnetic transition elements show interesting magnetic properties, not much is known about the magnetic properties of titanium-based MXenes. Here, we measured the magnetic properties of Ti3C2Tx MXenes synthesized by different chemical etching conditions such as etching temperature and time. Our magnetic measurements were performed in a superconducting quantum interference device (SQUID) vibrating sample. These data suggest that there is a paramagnetic-antiferromagnetic (PM-AFM) phase transition and the transition temperature depends on the synthesis procedure of MXenes. Our observation indicates that the magnetic properties of these MXenes can be tuned by the extent of chemical etching, which can be beneficial for the design of MXenes-based spintronic devices. 
    more » « less
  5. Abstract We report on the largest open‐shell graphenic bilayer and also the first example of triply negatively charged radical π‐dimer. Upon three‐electron reduction, bilayer nanographene fragment molecule (C96H24Ar6)2(Ar=2,6‐dimethylphenyl) (12) was transformed to a triply negatively charged species123.−, which has been characterized by single‐crystal X‐ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID).123.−features a 96‐center‐3‐electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π‐fused rings with 96 conjugatedsp2carbon atoms. Spin frustration is observed with the frustration parameterf>31.8 at low temperatures in123.−, which indicates graphene upon reduction doping may behave as a quantum spin liquid. 
    more » « less