skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Periodic Radio Emission from the T8 Dwarf WISE J062309.94–045624.6
Abstract We present the detection of rotationally modulated, circularly polarized radio emission from the T8 brown dwarf WISE J062309.94−045624.6 between 0.9 and 2.0 GHz. We detected this high-proper-motion ultracool dwarf with the Australian SKA Pathfinder in 1.36 GHz imaging data from the Rapid ASKAP Continuum Survey. We observed WISE J062309.94−045624.6 to have a time and frequency averaged StokesIflux density of 4.17 ± 0.41 mJy beam−1, with an absolute circular polarization fraction of 66.3% ± 9.0%, and calculated a specific radio luminosity ofLν∼ 1014.8erg s−1Hz−1. In follow-up observations with the Australian Telescope Compact Array and MeerKAT we identified a multipeaked pulse structure, used dynamic spectra to place a lower limit ofB> 0.71 kG on the dwarf’s magnetic field, and measured aP= 1.912 ± 0.005 hr periodicity, which we concluded to be due to rotational modulation. The luminosity and period we measured are comparable to those of other ultracool dwarfs observed at radio wavelengths. This implies that future megahertz to gigahertz surveys, with increased cadence and improved sensitivity, are likely to detect similar or later-type dwarfs. Our detection of WISE J062309.94−045624.6 makes this dwarf the coolest and latest-type star observed to produce radio emission.  more » « less
Award ID(s):
1816492
PAR ID:
10431582
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
951
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L43
Size(s):
Article No. L43
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present results from a search for radio emission in 77 stellar systems hosting 140 exoplanets, predominantly within 17.5 pc using the Very Large Array (VLA) at 4–8 GHz. This is the largest and most sensitive search to date for radio emission in exoplanetary systems in the GHz frequency range. We obtained new observations of 58 systems and analyzed archival observations of an additional 19 systems. Our choice of frequency and volume limit is motivated by radio detections of ultracool dwarfs (UCDs), including T dwarfs with masses at the exoplanet threshold of ∼13MJ. Our surveyed exoplanets span a mass range of ≈10−3–10MJand semimajor axes of ≈10−2–10 au. We detect a single target—GJ 3323 (M4) hosting two exoplanets with minimum masses of 2 and 2.3M—with a circular polarization fraction of ≈40%; the radio luminosity agrees with its known X-ray luminosity and the Güdel–Benz relation for stellar activity suggesting a likely stellar origin, but the high circular polarization fraction may also be indicative of star–planet interaction. For the remaining sources our 3σupper limits are generallyLν≲ 1012.5erg s−1Hz−1, comparable to the lowest radio luminosities in UCDs. Our results are consistent with previous targeted searches of individual systems at GHz frequencies while greatly expanding the sample size. Our sensitivity is comparable to predicted fluxes for some systems considered candidates for detectable star–planet interaction. Observations with future instruments such as the Square Kilometre Array and Next-Generation VLA will be necessary to further constrain emission mechanisms from exoplanet systems at GHz frequencies. 
    more » « less
  2. As an initial pilot study of magnetism in Y dwarfs, we have observed the three known IR variable Y dwarfs WISE J085510.83-071442.5, WISE J140518.40+553421.4, and WISEP J173835.53+273258.9 with the Karl G. Jansky Very Large Array (VLA) from 4-8 GHz to investigate the presence of quiescent radio emission as a proxy for highly circularly polarized radio emission associated with large-scale auroral currents. Measurements of magnetic fields on Y dwarfs, currently only possible by observing auroral radio emission, are essential for constraining fully convective magnetic dynamo models. We do not detect any pulsed or quiescent radio emission, down to rms noise levels of 7.2 uJy for WISE J085510.83-071442.5, 2.2 uJy for WISE J140518.40+553421.4, and 3.2 uJy for WISEP J173835.53+273258.9. The fractional detection rate of radio emission from T dwarfs is <10% and suggests that a much larger sample of deep observations of Y dwarfs is needed to rule out radio emission in the Y dwarf population. The significance of a single detection provides strong motivation for such a search. 
    more » « less
  3. ABSTRACT Solar radio emission at low frequencies (<1 GHz) can provide valuable information on processes driving flares and coronal mass ejections (CMEs). Radio emission has been detected from active M dwarf stars, suggestive of much higher levels of activity than previously thought. Observations of active M dwarfs at low frequencies can provide information on the emission mechanism for high energy flares and possible stellar CMEs. Here, we conducted two observations with the Australian Square Kilometre Array Pathfinder Telescope totalling 26 h and scheduled to overlap with the Transiting Exoplanet Survey Satellite Sector 36 field, utilizing the wide fields of view of both telescopes to search for multiple M dwarfs. We detected variable radio emission in Stokes I centred at 888 MHz from four known active M dwarfs. Two of these sources were also detected with Stokes V circular polarization. When examining the detected radio emission characteristics, we were not able to distinguish between the models for either electron cyclotron maser or gyrosynchrotron emission. These detections add to the growing number of M dwarfs observed with variable low-frequency emission. 
    more » « less
  4. ABSTRACT Radio emission has been detected from tens of white dwarfs, in particular in accreting systems. Additionally, radio emission has been predicted as a possible outcome of a planetary system around a white dwarf. We searched for 3 GHz radio continuum emission in 846 000 candidate white dwarfs previously identified in Gaia using the Very Large Array Sky Survey (VLASS) Epoch 1 Quick Look Catalogue. We identified 13 candidate white dwarfs with a counterpart in VLASS within 2 arcsec. Five of those were found not to be white dwarfs in follow-up or archival spectroscopy, whereas seven others were found to be chance alignments with a background source in higher resolution optical or radio images. The remaining source, WDJ204259.71+152108.06, is found to be a white dwarf and M-dwarf binary with an orbital period of 4.1 d and long-term stochastic optical variability, as well as luminous radio and X-ray emission. For this binary, we find no direct evidence of a background contaminant, and a chance alignment probability of only ≈2 per cent. However, other evidence points to the possibility of an unfortunate chance alignment with a background radio and X-ray emitting quasar, including an unusually poor Gaia DR3 astrometric solution for this source. With at most one possible radio emitting white dwarf found, we conclude that strong (≳1–3 mJy) radio emission from white dwarfs in the 3 GHz band is virtually non-existent outside of interacting binaries. 
    more » « less
  5. Abstract We report the detection of 15 GHz radio continuum emission associated with the classical Cepheid variable starδCephei (δCep) based on observations with the Karl G. Jansky Very Large Array. Our results constitute the first probable detection of radio continuum emission from a classical Cepheid. We observed the star at pulsation phaseϕ≈ 0.43 (corresponding to the phase of maximum radius and minimum temperature) during three pulsation cycles in late 2018 and detected statistically significant emission (>5σ) during one of the three epochs. The observed radio emission appears to be variable at a ≳10% level on timescales of days to weeks. We also present an upper limit on the 10 GHz flux density at pulsation phaseϕ= 0.31 from an observation in 2014. We discuss possible mechanisms that may produce the observed 15 GHz emission, but cannot make a conclusive identification from the present data. The emission does not appear to be consistent with originating from a close-in, late-type dwarf companion, although this scenario cannot yet be strictly excluded. Previous X-ray observations have shown thatδCep undergoes periodic increases in X-ray flux during pulsation phaseϕ≈ 0.43. The lack of radio detection in two out of three observing epochs atϕ≈ 0.43 suggests that either the radio emission is not linked with a particular pulsation phase, or else that the strength of the generated radio emission in each pulsation cycle is variable. 
    more » « less