Abstract 2D nanoslit devices, where two crystals with atomically flat surfaces are separated by only a few nanometers, have attracted considerable attention because their tunable control over the confinement allows for the discovery of unusual transport behavior of gas, water, and ions. Here, the passage of double‐stranded DNA molecules is studied through nanoslits fabricated from exfoliated 2D materials, such as graphene or hexagonal boron nitride, and the DNA polymer behavior is examined in this tight confinement. Two types of events are observed in the ionic current: long current blockades that signal DNA translocation and short spikes where DNA enters the slits but withdraws. DNA translocation events exhibit three distinct phases in their current‐blockade traces—loading, translation, and exit. Coarse‐grained molecular dynamics simulation allows the different polymer configurations of these phases to be identified. DNA molecules, including folds and knots in their polymer structure, are observed to slide through the slits with near‐uniform velocity without noticeable frictional interactions of DNA with the confining graphene surfaces. It is anticipated that this new class of 2D‐nanoslit devices will provide unique ways to study polymer physics and enable lab‐on‐a‐chip biotechnology.
more »
« less
Role of DNA–DNA sliding friction and nonequilibrium dynamics in viral genome ejection and packaging
Abstract Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers. We measure extremely low initial exit velocity, a regime of exponentially increasing velocity, stochastic pausing that dominates the kinetics and large dynamic heterogeneity. Measurements with variable applied force provide evidence that the initial velocity is controlled by DNA–DNA sliding friction, consistent with a Frenkel–Kontorova model for nanoscale friction. We confirm several aspects of the ejection dynamics predicted by theoretical models. Features of the pausing suggest that it is connected to the phenomenon of ‘clogging’ in soft matter systems. Our results provide evidence that DNA–DNA friction and clogging control the DNA exit dynamics, but that this friction does not significantly affect DNA packaging.
more »
« less
- Award ID(s):
- 1716219
- PAR ID:
- 10431622
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 51
- Issue:
- 15
- ISSN:
- 0305-1048
- Page Range / eLocation ID:
- p. 8060-8069
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Many viruses employ ATP-powered motors during assembly to translocate DNA into procapsid shells. Previous reports raise the question if motor function is modulated by substrate DNA sequence: (i) the phage T4 motor exhibits large translocation rate fluctuations and pauses and slips; (ii) evidence suggests that the phage phi29 motor contacts DNA bases during translocation; and (iii) one theoretical model, the ‘B-A scrunchworm’, predicts that ‘A-philic’ sequences that transition more easily to A-form would alter motor function. Here, we use single-molecule optical tweezers measurements to compare translocation of phage, plasmid, and synthetic A-philic, GC rich sequences by the T4 motor. We observed no significant differences in motor velocities, even with A-philic sequences predicted to show higher translocation rate at high applied force. We also observed no significant changes in motor pausing and only modest changes in slipping. To more generally test for sequence dependence, we conducted correlation analyses across pairs of packaging events. No significant correlations in packaging rate, pausing or slipping versus sequence position were detected across repeated measurements with several different DNA sequences. These studies suggest that viral genome packaging is insensitive to DNA sequence and fluctuations in packaging motor velocity, pausing and slipping are primarily stochastic temporal events.more » « less
-
Abstract Biomolecular systems are dependent on a complex interplay of forces. Modern force spectroscopy techniques provide means of interrogating these forces, but they are not optimized for studies in constrained environments as they require attachment to micron-scale probes such as beads or cantilevers. Nanomechanical devices are a promising alternative, but this requires versatile designs that can be tuned to respond to a wide range of forces. We investigate the properties of a nanoscale force sensitive DNA origami device which is highly customizable in geometry, functionalization, and mechanical properties. The device, referred to as the NanoDyn, has a binary (open or closed) response to an applied force by undergoing a reversible structural transition. The transition force is tuned with minor alterations of 1 to 3 DNA oligonucleotides and spans tens of picoNewtons (pN). The DNA oligonucleotide design parameters also strongly influence the efficiency of resetting the initial state, with higher stability devices (≳10 pN) resetting more reliably during repeated force-loading cycles. Finally, we show the opening force is tunable in real time by adding a single DNA oligonucleotide. These results establish the potential of the NanoDyn as a versatile force sensor and provide fundamental insights into how design parameters modulate mechanical and dynamic properties.more » « less
-
Abstract Glacier sliding has major environmental consequences, but friction caused by debris in the basal ice of glaciers is seldom considered in sliding models. To include such friction, divergent hypotheses for clast‐bed contact forces require testing. In experiments we rotate an ice ring (outside diameter = 0.9 m), with and without isolated till clasts, over a smooth rock bed. Ice is kept at its pressure‐melting temperature, and meltwater drains along a film at the bed to atmospheric pressure at its edges. The ice pressure or bed‐normal component of ice velocity is controlled, while bed shear stress is measured. Results with debris‐free ice indicate friction coefficients < 0.01. Shear stresses caused by clasts in ice are independent of ice pressure. This independence indicates that with increases in ice pressure the water pressure in cavities observed beneath clasts increases commensurately to allow drainage of cavities into the melt film, leaving clast‐bed contact forces unaffected. Shear stresses, instead, are proportional to bed‐normal ice velocity. Cavities and the absence of regelation ice indicate that, unlike model formulations, regelation past clasts does not control contact forces. Alternatively, heat from the bed melts ice above clasts, creating pressure gradients in adjacent meltwater films that cause contact forces to depend on bed‐normal ice velocity. This model can account for observations if rock friction predicated on Hertzian clast‐bed contacts is assumed. Including debris‐bed friction in glacier sliding models will require coupling the ice velocity field near the bed to contact forces rather than imposing a pressure‐based friction rule.more » « less
-
null (Ed.)DNA origami has emerged as a versatile method to synthesize nanostructures with high precision. This bottom-up self-assembly approach can produce not only complex static architectures, but also dynamic reconfigurable structures with tunable properties. While DNA origami has been explored increasingly for diverse applications, such as biomedical and biophysical tools, related mechanics are also under active investigation. Here we studied the structural properties of DNA origami and investigated the energy needed to deform the DNA structures. We used a single-layer rectangular DNA origami tile as a model system and studied its cyclization process. This origami tile was designed with an inherent twist by placing crossovers every 16 base-pairs (bp), corresponding to a helical pitch of 10.67 bp/turn, which is slightly different from that of native B-form DNA (~10.5 bp/turn). We used molecular dynamics (MD) simulations based on a coarse-grained model on an open-source computational platform, oxDNA. We calculated the energies needed to overcome the initial curvature and induce mechanical deformation by applying linear spring forces. We found that the initial curvature may be overcome gradually during cyclization and a total of ~33.1 kcal/mol is required to complete the deformation. These results provide insights into the DNA origami mechanics and should be useful for diverse applications such as adaptive reconfiguration and energy absorption.more » « less
An official website of the United States government
